论文标题

GitHub存储库中的机器人检测

Bot Detection in GitHub Repositories

论文作者

Chidambaram, Natarajan, Mazrae, Pooya Rostami

论文摘要

诸如GitHub之类的当代社会编码平台促进了协作发展。这些平台中托管的许多开源软件存储库都使用机器帐户(bot)来自动化和促进各种努力密集型和重复性的活动。确定帐户是否对应于机器人或人类贡献者对于社会技术发展分析很重要,例如,了解人类如何在机器人的存在下进行协作和互动,以评估使用机器人的积极和负面影响,以识别顶级项目贡献者,以识别潜在的总线因素等。我们的项目旨在将受过训练的机器学习(ML)分类器从Bodegha机器人检测工具作为Grimoirelab软件开发分析平台的插件。在这项工作中,我们介绍了使用Perceval,使用Bodegha将机器人与人类区分开来检索贡献和贡献数据的管道的过程,并使用Kibana可视化结果。

Contemporary social coding platforms like GitHub promote collaborative development. Many open-source software repositories hosted in these platforms use machine accounts (bots) to automate and facilitate a wide range of effort-intensive and repetitive activities. Determining if an account corresponds to a bot or a human contributor is important for socio-technical development analytics, for example, to understand how humans collaborate and interact in the presence of bots, to assess the positive and negative impact of using bots, to identify the top project contributors, to identify potential bus factors, and so on. Our project aims to include the trained machine learning (ML) classifier from the BoDeGHa bot detection tool as a plugin to the GrimoireLab software development analytics platform. In this work, we present the procedure to form a pipeline for retrieving contribution and contributor data using Perceval, distinguishing bots from humans using BoDeGHa, and visualising the results using Kibana.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源