论文标题

使用神经网络潜力研究氮空位的GAN多电荷状态的点缺陷特性

Using neural network potential to study point defect properties in multiple charge states of GaN with nitrogen vacancy

论文作者

Shimizu, Koji, Dou, Ying, Arguelles, Elvis F., Moriya, Takumi, Minamitani, Emi, Watanabe, Satoshi

论文摘要

对电荷缺陷进行研究是必要的,以了解半导体的特性。尽管密度功能理论计算可以准确地描述相关的物理量,但这些计算大大增加了计算负载,这通常会限制该方法在大规模系统中的应用。在这项研究中,我们提出了一种新的神经网络电位(NNP)的方案,以分析多个电荷状态下的点缺陷行为。提出的计划仅需要对常规方案的最小修改。我们使用Wurzite-GAN的氮空位表明了拟议的NNP的预测性能,电荷状态为0、1+,2+和3+。拟议的方案准确训练了所有电荷状态的总能量和原子力。此外,它相当复制了有缺陷结构的声子条带结构和热力学特性。根据这项研究的结果,我们希望提出的方案可以使我们能够研究更复杂的缺陷系统并导致新型半导体应用中的突破。

Investigation of charged defects is necessary to understand the properties of semiconductors. While density functional theory calculations can accurately describe the relevant physical quantities, these calculations increase the computational loads substantially, which often limits the application of this method to large-scale systems. In this study, we propose a new scheme of neural network potential (NNP) to analyze the point defect behavior in multiple charge states. The proposed scheme necessitates only minimal modifications to the conventional scheme. We demonstrated the prediction performance of the proposed NNP using wurzite-GaN with a nitrogen vacancy with charge states of 0, 1+, 2+, and 3+. The proposed scheme accurately trained the total energies and atomic forces for all the charge states. Furthermore, it fairly reproduced the phonon band structures and thermodynamics properties of the defective structures. Based on the results of this study, we expect that the proposed scheme can enable us to study more complicated defective systems and lead to breakthroughs in novel semiconductor applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源