论文标题

具有丰富属性的个性化图像美学评估

Personalized Image Aesthetics Assessment with Rich Attributes

论文作者

Yang, Yuzhe, Xu, Liwu, Li, Leida, Qie, Nan, Li, Yaqian, Zhang, Peng, Guo, Yandong

论文摘要

个性化的图像美学评估(PIAA)由于其高度主观性而具有挑战性。人们的审美口味取决于多样化的因素,包括图像特征和主题角色。现有的PIAA数据库在注释多样性方面受到限制,尤其是主题方面,这无法再满足PIAA研究的日益增长的需求。为了解决难题,我们到目前为止进行了最全面的个性化图像美学的主观研究,并引入了具有丰富属性(PARA)的新个性化图像美学数据库,该数据库由438名主题的31,220张图像组成。 Para具有富裕的注释,包括9个面向图像的客观属性和4个面向人类的主观属性。此外,还提供了脱敏的主题信息,例如人格特质,以支持PIAA和用户肖像的研究。提供了注释数据的全面分析,统计研究表明,审美偏好可以通过建议的主观属性来反映。我们还通过利用主题信息作为有条件的先验提出有条件的PIAA模型。实验结果表明,条件PIAA模型可以胜过对照组,这也是第一次尝试证明图像美学和主题字符如何相互作用以在图像美学上产生复杂的个性化品味。我们认为,数据库和相关分析对于进行下一代PIAA研究将很有用。可以在以下网址找到Para的项目页面:https://cv-datasets.institutecv.com/#/data-sets。

Personalized image aesthetics assessment (PIAA) is challenging due to its highly subjective nature. People's aesthetic tastes depend on diversified factors, including image characteristics and subject characters. The existing PIAA databases are limited in terms of annotation diversity, especially the subject aspect, which can no longer meet the increasing demands of PIAA research. To solve the dilemma, we conduct so far, the most comprehensive subjective study of personalized image aesthetics and introduce a new Personalized image Aesthetics database with Rich Attributes (PARA), which consists of 31,220 images with annotations by 438 subjects. PARA features wealthy annotations, including 9 image-oriented objective attributes and 4 human-oriented subjective attributes. In addition, desensitized subject information, such as personality traits, is also provided to support study of PIAA and user portraits. A comprehensive analysis of the annotation data is provided and statistic study indicates that the aesthetic preferences can be mirrored by proposed subjective attributes. We also propose a conditional PIAA model by utilizing subject information as conditional prior. Experimental results indicate that the conditional PIAA model can outperform the control group, which is also the first attempt to demonstrate how image aesthetics and subject characters interact to produce the intricate personalized tastes on image aesthetics. We believe the database and the associated analysis would be useful for conducting next-generation PIAA study. The project page of PARA can be found at: https://cv-datasets.institutecv.com/#/data-sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源