论文标题
C* - 代数之间的加权同构
Weighted homomorphisms between C*-algebras
论文作者
论文摘要
我们表明,当且仅当它保留零生产率,范围 - 正交性和域 - 正交性和域 - 正交性时,我们表明,C*-Algebras之间的有界的线性图是加权$ \ ast $ hast $ -HOMORMOLIST($ \ ast $ - HOMORPHILIST的中心压缩)。因此,当且仅当它保留零产物时,就可以自动偶像,有限的线性图是一个加权$ \ ast $ - 肌形态。 作为一个应用,我们表明,当冬季 - 扎卡里亚斯的意义上且仅当它是正时并保留零产物时,c*-algebras之间的线性图是完全正面的,在冬季 - Zacharias的意义上为零。
We show that a bounded, linear map between C*-algebras is a weighted $\ast$-homomorphism (the central compression of a $\ast$-homomorphism) if and only if it preserves zero-products, range-orthogonality, and domain-orthogonality. It follows that a self-adjoint, bounded, linear map is a weighted $\ast$-homomorphism if and only if it preserves zero-products. As an application we show that a linear map between C*-algebras is completely positive, order zero in the sense of Winter-Zacharias if and only if it is positive and preserves zero-products.