论文标题
与隧道屏障混乱的空腔中的量子运输
Quantum transport in chaotic cavities with tunnel barriers
论文作者
论文摘要
我们将半经典近似,矩阵积分和对称多项式的理论汇总在一起,以解决量子混乱领域中长期存在的问题:在存在隧道屏障的情况下计算运输矩,并且开放通道的数量($ M $)很小。与以前的方法相反,我们的方法在$ m $中是非扰动的;取而代之的是,我们以屏障的反射率的功率系列形式获得了明确的表达,其系数是$ m $的理性功能。在一般时刻,我们必须要求障碍相等,并且时间逆转对称性被打破,但是对于电导率,我们可以处理一般情况。我们的方法说明了指数性的小型非扰动术语,这些术语是以前的半经典方法无法访问的。我们还展示了如何在系统中包含两个以上的潜在客户。
We bring together the semiclassical approximation, matrix integrals and the theory of symmetric polynomials in order to solve a long standing problem in the field of quantum chaos: to compute transport moments when tunnel barriers are present and the number of open channels, $M$, is small. In contrast to previous approaches, ours is non-perturbative in $M$; instead, we arrive at an explicit expression in the form of a power series in the barrier's reflectivity, whose coefficients are rational functions of $M$. For general moments we must require that the barriers are equal and time reversal symmetry is broken, but for conductance we treat the general situation. Our method accounts for exponentially small non-perturbative terms that were not accessible to previous semiclassical approaches. We also show how to include more than two leads in the system.