论文标题
多尺度模型预测结晶材料的摩擦
Multi-scale model predicting friction of crystalline materials
论文作者
论文摘要
我们提出了一个多尺度计算框架,适用于在计算机中完全设计固体润滑剂界面。该方法基于建立在经典热激活的二维Prandtl-Tomlinson模型上的随机热力学,与第一个原理方法相关联,以准确捕获真实材料的性质。它允许研究由于其电子结构引起的材料摩擦而引起的能量耗散,并且自然访问了典型的摩擦力显微镜的时间尺度范围。这为设计具有原子量身定制的特性的宽类材料表面开辟了新的可能性。我们将多尺度框架应用于一类二维分层材料,并在能量景观拓扑与耗散的拓扑之间揭示了一个微妙的相互作用,这些相互作用仅基于能源障碍,而已知的静态方法无法捕获。
We present a multi-scale computational framework suitable for designing solid lubricant interfaces fully in silico. The approach is based on stochastic thermodynamics founded on the classical thermally activated two-dimensional Prandtl-Tomlinson model, linked with First Principles methods to accurately capture the properties of real materials. It allows investigating the energy dissipation due to friction in materials as it arises directly from their electronic structure, and naturally accessing the time-scale range of a typical friction force microscopy. This opens new possibilities for designing a broad class of material surfaces with atomically tailored properties. We apply the multi-scale framework to a class of two-dimensional layered materials and reveal a delicate interplay between the topology of the energy landscape and dissipation that known static approaches based solely on the energy barriers fail to capture.