论文标题
部分可观测时空混沌系统的无模型预测
Explicitising The Implicit Intrepretability of Deep Neural Networks Via Duality
论文作者
论文摘要
Lakshminarayanan和Singh [2020]最近的工作为完全连接的深神经网络(DNNS)提供了双重视图,并提供了整流的线性单元(RELU)。结果表明(i)大门中的信息在分析上以称为神经路径内核(NPK)的内核进行分析表征,并且(ii)最关键的信息是在大门中学习的,因此,鉴于学识渊博的门,可以从划痕中重新审查,而无需大量损失。使用双重视图,在本文中,我们重新考虑了DNN的常规解释,从而阐明了DNN的隐式解释性。在此方面,我们首先显示了新的理论特性,即分别在存在卷积层和跳过连接的情况下,NPK的旋转不变性和集成结构。我们的理论导致了两个令人惊讶的经验结果,这些结果挑战了传统的智慧:(i)即使以1个输入为持续的1个输入,可以对权重进行训练,(ii)可以将门口罩改组,而不会出现任何重大的绩效损失。这些结果激发了一类新的网络,我们称之为深层封闭式网络(DLGN)。 DLGN使用双重提升铺路的现象,与传统解释相反,对DNN的更直接和更简单的解释。我们通过在CIFAR-10和CIFAR-100上进行的广泛实验表明,这些DLGN导致了更好的可解释性准确性折衷。
Recent work by Lakshminarayanan and Singh [2020] provided a dual view for fully connected deep neural networks (DNNs) with rectified linear units (ReLU). It was shown that (i) the information in the gates is analytically characterised by a kernel called the neural path kernel (NPK) and (ii) most critical information is learnt in the gates, in that, given the learnt gates, the weights can be retrained from scratch without significant loss in performance. Using the dual view, in this paper, we rethink the conventional interpretations of DNNs thereby explicitsing the implicit interpretability of DNNs. Towards this, we first show new theoretical properties namely rotational invariance and ensemble structure of the NPK in the presence of convolutional layers and skip connections respectively. Our theory leads to two surprising empirical results that challenge conventional wisdom: (i) the weights can be trained even with a constant 1 input, (ii) the gating masks can be shuffled, without any significant loss in performance. These results motivate a novel class of networks which we call deep linearly gated networks (DLGNs). DLGNs using the phenomenon of dual lifting pave way to more direct and simpler interpretation of DNNs as opposed to conventional interpretations. We show via extensive experiments on CIFAR-10 and CIFAR-100 that these DLGNs lead to much better interpretability-accuracy tradeoff.