论文标题

学习公平模型没有敏感属性:一种生成方法

Learning Fair Models without Sensitive Attributes: A Generative Approach

论文作者

Zhu, Huaisheng, Dai, Enyan, Liu, Hui, Wang, Suhang

论文摘要

大多数现有的公平分类器都依靠敏感属性来实现公平性。但是,对于许多情况,由于隐私和法律问题,我们无法获得敏感属性。缺乏敏感属性挑战了许多现有的公平分类器。尽管我们缺乏敏感属性,但对于许多应用程序,通常存在与敏感属性相关的各种格式的特征或信息。例如,一个人的购买历史可以反映他或她的种族,这将有助于学习比赛中的公平分类者。但是,探索无敏感属性的学习公平模型的相关功能的工作非常有限。因此,在本文中,我们通过探索相关特征来研究一个新的学习公平模型的问题,而没有敏感属性。我们提出了一个概率生成框架,以有效地从具有各种格式的相关特征的培训数据中估算敏感属性,并利用估计的敏感属性信息来学习公平模型。现实世界数据集的实验结果显示了我们框架的有效性,从精度和公平性角度来看。

Most existing fair classifiers rely on sensitive attributes to achieve fairness. However, for many scenarios, we cannot obtain sensitive attributes due to privacy and legal issues. The lack of sensitive attributes challenges many existing fair classifiers. Though we lack sensitive attributes, for many applications, there usually exists features or information of various formats that are relevant to sensitive attributes. For example, purchase history of a person can reflect his or her race, which would help for learning fair classifiers on race. However, the work on exploring relevant features for learning fair models without sensitive attributes is rather limited. Therefore, in this paper, we study a novel problem of learning fair models without sensitive attributes by exploring relevant features. We propose a probabilistic generative framework to effectively estimate the sensitive attribute from the training data with relevant features in various formats and utilize the estimated sensitive attribute information to learn fair models. Experimental results on real-world datasets show the effectiveness of our framework in terms of both accuracy and fairness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源