论文标题
在不确定性下运行救护车队
Operation of an ambulance fleet under uncertainty
论文作者
论文摘要
我们介绍了两个新的优化模型,以派遣救护车。当紧急电话到达是否应派遣救护车来派遣救护车时,使用了称为救护车选择问题的第一个模型,如果是这样,则应派遣哪个救护车,或者应将请求列入等待请求的队列。当救护车完成目前的任务以决定是否应派遣到排队等待的请求,以及是否应将救护车派遣到救护车分期地点,如果是的,第二个模型被称为救护车重新分配问题,以决定是否应派出救护车的要求,以确定救护车是否应派遣到等待的请求时,使用了第二个模型。这些决定不仅影响正在考虑的紧急电话和救护车,还影响救护车队服务未来电话的能力。未来电话的位置,到达时间和类型存在不确定性。我们提出了一种滚动的地平线方法,该方法将当前的决策与第一阶段的决策与第二阶段模型相结合,代表救护车机队服务未来电话的能力。第二阶段优化问题可以作为大规模确定性整数线性程序提出。我们提出了一种列生成算法,以解决这些第二阶段问题的连续放松。这些第二阶段连续放松的最佳客观值用于做出大约最佳的第一阶段决策。我们将最终的派遣政策与Rio de Janeiro紧急医疗服务的流行决策规则进行了比较,这是基于超过2年的紧急呼吁的数据。这些测试表明,我们提出的政策导致的响应时间少于流行决策规则。
We introduce two new optimization models for the dispatch of ambulances. The first model, called the ambulance selection problem, is used when an emergency call arrives to decide whether an ambulance should be dispatched for that call, and if so, which ambulance should be dispatched, or whether the request should be put in a queue of waiting requests. The second model, called the ambulance reassignment problem, is used when an ambulance finishes its current task to decide whether the ambulance should be dispatched to a request waiting in queue, and if so, which request, or whether the ambulance should be dispatched to an ambulance staging location, and if so, which ambulance staging location. These decisions affect not only the emergency call and ambulance under consideration, but also the ability of the ambulance fleet to service future calls. There is uncertainty regarding the locations, arrival times, and types of future calls. We propose a rolling horizon approach that combines the current decisions to be made as first-stage decisions with second-stage models that represent the ability of the ambulance fleet to service future calls. The second-stage optimization problems can be formulated as large-scale deterministic integer linear programs. We propose a column generation algorithm to solve the continuous relaxation of these second-stage problems. The optimal objective values of these second-stage continuous relaxations are used to make approximately optimal first-stage decisions. We compare our resulting dispatch policy with popular decision rules for Rio de Janeiro emergency medical service, based on data of more than 2 years of emergency calls for that service. These tests show that our proposed policy results in smaller response times than the popular decision rules.