论文标题
来自人类受试者的小规模数据的零射元学习
Zero-shot meta-learning for small-scale data from human subjects
论文作者
论文摘要
尽管机器学习的发展导致了大数据的令人印象深刻的表现,但实际上,许多人类受试者的数据较小且稀疏。应用于此类数据的现有方法通常不容易推广到样本外受试者。取而代之的是,模型必须对可以从不同分布中得出的测试数据进行预测,该问题称为\ textit {零射击学习}。为了应对这一挑战,我们使用元学习方法开发了一个端到端框架,该方法使该模型能够迅速适应新的预测任务,并使用有限的培训数据来进行样本外测试数据。我们使用三个实际的小型人类受试者数据集(两项随机对照研究和一项观察性研究),为此我们预测了持有治疗组的治疗结果。我们的模型了解每种干预措施的潜在治疗效果,并且通过设计可以自然处理多任务预测。我们表明,我们的模型在每个持有组的整体上都表现最好,尤其是当测试组与培训组明显不同时。我们的模型对改善对更广泛人群的小型人类研究的概括具有影响。
While developments in machine learning led to impressive performance gains on big data, many human subjects data are, in actuality, small and sparsely labeled. Existing methods applied to such data often do not easily generalize to out-of-sample subjects. Instead, models must make predictions on test data that may be drawn from a different distribution, a problem known as \textit{zero-shot learning}. To address this challenge, we develop an end-to-end framework using a meta-learning approach, which enables the model to rapidly adapt to a new prediction task with limited training data for out-of-sample test data. We use three real-world small-scale human subjects datasets (two randomized control studies and one observational study), for which we predict treatment outcomes for held-out treatment groups. Our model learns the latent treatment effects of each intervention and, by design, can naturally handle multi-task predictions. We show that our model performs the best holistically for each held-out group and especially when the test group is distinctly different from the training group. Our model has implications for improved generalization of small-size human studies to the wider population.