论文标题

预测量子技术的固态材料平台

Predicting Solid State Material Platforms for Quantum Technologies

论文作者

Hebnes, Oliver Lerstøl, Bathen, Marianne Etzelmüller, Schøyen, Øyvind Sigmundson, Larsen, Sebastian G. Winther, Vines, Lasse, Hjorth-Jensen, Morten

论文摘要

半导体材料为量子技术(QT)提供了一个引人注目的平台,并且可以在包含来自实验和理论探索的信息的数据库中找到大量材料的性能。但是,搜索这些数据库以寻找有前途的候选材料以获取量子技术应用是一个主要挑战。因此,我们开发了一个使用材料信息和机器学习方法自动发现QT的半导体主机平台的框架,从而导致数据集由$ 25.000 $ $ 25.000 $材料和近5000美元的物理学知识功能组成。设计了三种方法,称为Ferrenti,扩展的Ferrenti和经验方法,用于标记监督机器学习(ML)方法的数据逻辑回归,决策树,随机森林和梯度增强。我们发现,在这三种方法中,仅依靠文献的发现的经验方法比其他两种方法比其他两种方法在比较协方差矩阵中两个最大的特征值时明确区分了候选者。与文献的期望以及针对带隙和离子特征的Ferrenti和扩展的Ferrenti方法相比,经验方法中的ML方法突出了与对称性和晶体结构相关的特征,包括与键长,方向,方向和辐射分布相关的特征,在预测适合QT的材料时具有影响力。所有三种方法和所有四种ML方法均以$ 47合格的候选人%($> 50 \ \%$的概率)为$ 8 $ elemental,$ 29 $二进制和$ 10 $的第三级化合物,并为量子技术进一步材料探索提供基础。

Semiconductor materials provide a compelling platform for quantum technologies (QT), and the properties of a vast amount of materials can be found in databases containing information from both experimental and theoretical explorations. However, searching these databases to find promising candidate materials for quantum technology applications is a major challenge. Therefore, we have developed a framework for the automated discovery of semiconductor host platforms for QT using material informatics and machine learning methods, resulting in a dataset consisting of over $25.000$ materials and nearly $5000$ physics-informed features. Three approaches were devised, named the Ferrenti, extended Ferrenti and the empirical approach, to label data for the supervised machine learning (ML) methods logistic regression, decision trees, random forests and gradient boosting. We find that of the three, the empirical approach relying exclusively on findings from the literature predicted substantially fewer candidates than the other two approaches with a clear distinction between suitable and unsuitable candidates when comparing the two largest eigenvalues in the covariance matrix. In contrast to expectations from the literature and that found for the Ferrenti and extended Ferrenti approaches focusing on band gap and ionic character, the ML methods from the empirical approach highlighted features related to symmetry and crystal structure, including bond length, orientation and radial distribution, as influential when predicting a material as suitable for QT. All three approaches and all four ML methods agreed on a subset of $47$ eligible candidates %(to a probability of $>50 \ \%$) of $8$ elemental, $29$ binary, and $10$ tertiary compounds, and provide a basis for further material explorations towards quantum technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源