论文标题

SIT:用于尖峰神经网络的仿生和非线性神经元

SIT: A Bionic and Non-Linear Neuron for Spiking Neural Network

论文作者

Jin, Cheng, Zhu, Rui-Jie, Wu, Xiao, Deng, Liang-Jian

论文摘要

尖峰神经网络(SNNS)引起了研究人员的兴趣,因为他们可以处理时间信息和低功耗。但是,当前的最新方法限制了它们的生物学合理性和性能,因为它们的神经元通常建立在简单的泄漏综合和火力(LIF)模型上。由于动态复杂性的高水平,现代神经元模型很少在SNN实践中实现。在这项研究中,我们采用了相位平面分析(PPA)技术,这是一种在神经动力学领域中经​​常使用的技术,用于整合近期的神经元模型,即izhikevich神经元。根据神经科学进步的发现,Izhikevich神经元模型在生物学上是可行的,同时与LIF神经元保持可比的计算成本。通过利用采用的PPA,我们完成了将改良的Izhikevich模型构建的神经元构建的SNN实践,被称为标准化的Izhikevich Tonic(SIT)神经元。为了进行性能,我们评估了自我构建的LIF和SIT符合SNN的图像分类任务的建议技术,该技术在静态MNIST,Fashion-Mnist,CIFAR-10数据集和NeuroMorphic N-MNIST上名为Hybrid Neural Network(HNN),CIFAR10-DVS和DVS128 GESTURE DATADASES。实验结果表明,所建议的方法在几乎所有测试数据集上表现出更现实的生物学逼真的行为,这表明了这种新型策略在弥合神经动力学和SNN实践之间的差距方面的效率。

Spiking Neural Networks (SNNs) have piqued researchers' interest because of their capacity to process temporal information and low power consumption. However, current state-of-the-art methods limited their biological plausibility and performance because their neurons are generally built on the simple Leaky-Integrate-and-Fire (LIF) model. Due to the high level of dynamic complexity, modern neuron models have seldom been implemented in SNN practice. In this study, we adopt the Phase Plane Analysis (PPA) technique, a technique often utilized in neurodynamics field, to integrate a recent neuron model, namely, the Izhikevich neuron. Based on the findings in the advancement of neuroscience, the Izhikevich neuron model can be biologically plausible while maintaining comparable computational cost with LIF neurons. By utilizing the adopted PPA, we have accomplished putting neurons built with the modified Izhikevich model into SNN practice, dubbed as the Standardized Izhikevich Tonic (SIT) neuron. For performance, we evaluate the suggested technique for image classification tasks in self-built LIF-and-SIT-consisted SNNs, named Hybrid Neural Network (HNN) on static MNIST, Fashion-MNIST, CIFAR-10 datasets and neuromorphic N-MNIST, CIFAR10-DVS, and DVS128 Gesture datasets. The experimental results indicate that the suggested method achieves comparable accuracy while exhibiting more biologically realistic behaviors on nearly all test datasets, demonstrating the efficiency of this novel strategy in bridging the gap between neurodynamics and SNN practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源