论文标题

解决随机流体结构相互作用的解决方案

Well-posedness of solutions to stochastic fluid-structure interaction

论文作者

Kuan, Jeffrey, Čanić, Sunčica

论文摘要

在本文中,我们介绍了一种建设性方法,可以研究溶液与随机噪声的随机流体结构相互作用。我们专注于随机流体结构相互作用中的基准问题,并证明在概率上强的意义上存在独特的弱解决方案。基准问题由2D时间依赖的Stokes方程组成,该方程描述了不可压缩的粘性流体与1D线性波方程建模的线性弹性膜相互作用的流动。膜在随机上被时间依赖的白噪声强迫。流体和结构是线性耦合的。建设性的存在证明是基于通过操作员分裂方法进行时间浪费的。这引入了一系列近似解决方案,它们是随机变量。我们显示了近似解决方案的子序列的存在,这些解决方案几乎可以肯定地融合到概率强的意义上。该证明是基于能量规范的预期基于统一的能量估计,这是弱紧凑性参数的骨干,从而导致与近似溶液相关的概率测量的弱收敛子序列。然后使用基于Skorohod表示定理和Gyöngy-Krylov引理的概率技术,以获得在概率上强的意义上几乎确定将随机近似溶液与弱解的子序列的几乎确定的收敛。结果表明,即使在及时存在粗糙的白噪声的情况下,确定性的基准FSI模型对于随机噪声也是可靠的。据我们所知,这是完全耦合随机流体结构相互作用的第一个适合性结果。

In this paper we introduce a constructive approach to study well-posedness of solutions to stochastic fluid-structure interaction with stochastic noise. We focus on a benchmark problem in stochastic fluid-structure interaction, and prove the existence of a unique weak solution in the probabilistically strong sense. The benchmark problem consists of the 2D time-dependent Stokes equations describing the flow of an incompressible, viscous fluid interacting with a linearly elastic membrane modeled by the 1D linear wave equation. The membrane is stochastically forced by the time-dependent white noise. The fluid and the structure are linearly coupled. The constructive existence proof is based on a time-discretization via an operator splitting approach. This introduces a sequence of approximate solutions, which are random variables. We show the existence of a subsequence of approximate solutions which converges, almost surely, to a weak solution in the probabilistically strong sense. The proof is based on uniform energy estimates in terms of the expectation of the energy norms, which are the backbone for a weak compactness argument giving rise to a weakly convergent subsequence of probability measures associated with the approximate solutions. Probabilistic techniques based on the Skorohod representation theorem and the Gyöngy-Krylov lemma are then employed to obtain almost sure convergence of a subsequence of the random approximate solutions to a weak solution in the probabilistically strong sense. The result shows that the deterministic benchmark FSI model is robust to stochastic noise, even in the presence of rough white noise in time. To the best of our knowledge, this is the first well-posedness result for fully coupled stochastic fluid-structure interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源