论文标题
非平衡统计力学和部分观察到的复杂系统的最佳预测
Nonequilibrium Statistical Mechanics and Optimal Prediction of Partially-Observed Complex Systems
论文作者
论文摘要
在现实世界中,通常只能访问或可测量的自由度子集。结果,经验建模的正确设置是部分观察到的系统。值得注意的是,数据驱动的模型始终超过几乎没有可观察到自由度的系统的基于物理的模型。例如,水文系统。在这里,我们为这种经验成功提供了操作者的理论解释。为了通过基于物理的模型来预测部分观察到的系统的未来行为,必须明确考虑使用数据同化和模型参数化的自由度。相比之下,数据驱动的模型采用延迟坐标的嵌入及其在Koopman操作员下的演变,以隐式地对缺失自由度的影响进行模拟。我们详细描述了使用新颖的最大熵和最大口径度量的数据驱动模型基础观测值的统计物理学。所得的非平衡性维纳投影应用于莫里兹万齐格形式主义,揭示了数据驱动的模型如何融合到可观察到的自由度的真实动力学。此外,该框架显示了数据驱动的模型如何隐含地推断出未观察到的自由度的影响,就像物理模型明确推断效果一样。这提供了一个统一的隐式模型框架,用于预测部分观察到的系统,并采用混合物理学的机器学习方法结合了隐式和明确的方面。
Only a subset of degrees of freedom are typically accessible or measurable in real-world systems. As a consequence, the proper setting for empirical modeling is that of partially-observed systems. Notably, data-driven models consistently outperform physics-based models for systems with few observable degrees of freedom; e.g., hydrological systems. Here, we provide an operator-theoretic explanation for this empirical success. To predict a partially-observed system's future behavior with physics-based models, the missing degrees of freedom must be explicitly accounted for using data assimilation and model parametrization. Data-driven models, in contrast, employ delay-coordinate embeddings and their evolution under the Koopman operator to implicitly model the effects of the missing degrees of freedom. We describe in detail the statistical physics of partial observations underlying data-driven models using novel Maximum Entropy and Maximum Caliber measures. The resulting nonequilibrium Wiener projections applied to the Mori-Zwanzig formalism reveal how data-driven models may converge to the true dynamics of the observable degrees of freedom. Additionally, this framework shows how data-driven models infer the effects of unobserved degrees of freedom implicitly, in much the same way that physics models infer the effects explicitly. This provides a unified implicit-explicit modeling framework for predicting partially-observed systems, with hybrid physics-informed machine learning methods combining implicit and explicit aspects.