论文标题
渐近平面的全息重建
Holographic reconstruction of asymptotically flat spacetimes
论文作者
论文摘要
我们使用生活在时空的“未来边界”的无质量领域的相关函数(即未来的null null null infinity $ \ mathscr {i}^+$)提出了散装时空几何的“全息”重建。在四维时空$ \ Mathcal {M Mathcal {M} $与另一个居住在三维无效边界$ \ MATHSCR {I}^+$中的无数群落领域的相关函数与另一个无数群领域的相关函数之间存在一对一的相关函数,这是全息的。这个想法是首先通过“反转”散装相关函数来重建批量度量$ g_ {μν} $,并通过通信以边界相关器来重新表达后者。这有效地允许接近$ \ Mathscr {i}^+$接近渐近观察者,以仅使用$ \ mathscr {i}^+$的相关函数来重建时空的深内部。
We present a "holographic" reconstruction of bulk spacetime geometry using correlation functions of a massless field living at the "future boundary" of the spacetime, namely future null infinity $\mathscr{I}^+$. It is holographic in the sense that there exists a one-to-one correspondence between correlation functions of a massless field in four-dimensional spacetime $\mathcal{M}$ and those of another massless field living in three-dimensional null boundary $\mathscr{I}^+$. The idea is to first reconstruct the bulk metric $g_{μν}$ by "inverting" the bulk correlation functions and re-express the latter in terms of boundary correlators via the correspondence. This effectively allows asymptotic observers close to $\mathscr{I}^+$ to reconstruct the deep interior of the spacetime using only correlation functions localized near $\mathscr{I}^+$.