论文标题
银河系和大众组装(GAMA):附近星系上的自组织地图应用
Galaxy And Mass Assembly (GAMA): Self-Organizing Map Application on Nearby Galaxies
论文作者
论文摘要
星系群在多种特性中显示出双峰性:恒星质量,颜色,特定的恒星形成率,大小和Sérsic指数。这些参数是我们的功能空间。我们使用了使用五个特征和K均值聚类技术代表的星系和质量组装(GAMA)调查的7556个星系的现有样本,表明双峰是更复杂的种群结构的表现,以2至6个簇表示。 在这里,我们使用自我组织地图(SOM),这是一种无监督的学习技术,可用于使用2D表示在更高维空间中可视化相似性,以将特征空间中的这些五维群集映射到二维投影中。为了进一步分析这些群集,使用SOM信息,我们同意以前的结果,即在特征空间中发现的子选集可以合理地映射到三个或五个群集上。我们探索“绿色谷”星系被映射到SOM上,表明绿谷人口中的多个间隙种群。 最后,我们使用SOM的投影来验证Galaxyzoo用户提供的形态学信息是否可见,如果可见功能,可以将其映射到SOM生成的地图上。可以合理地分离出星系是否光滑,可能的椭圆形或“特征”,但形态学特征(棒,螺旋臂)不能进行投票。 SOM有望成为在多维星系调查功能空间中绘制和识别指导性子人群的有用工具,只要它们足够大。
Galaxy populations show bimodality in a variety of properties: stellar mass, colour, specific star-formation rate, size, and Sérsic index. These parameters are our feature space. We use an existing sample of 7556 galaxies from the Galaxy and Mass Assembly (GAMA) survey, represented using five features and the K-means clustering technique, showed that the bimodalities are the manifestation of a more complex population structure, represented by between 2 and 6 clusters. Here we use Self Organizing Maps (SOM), an unsupervised learning technique which can be used to visualize similarity in a higher dimensional space using a 2D representation, to map these five-dimensional clusters in the feature space onto two-dimensional projections. To further analyze these clusters, using the SOM information, we agree with previous results that the sub-populations found in the feature space can be reasonably mapped onto three or five clusters. We explore where the "green valley" galaxies are mapped onto the SOM, indicating multiple interstitial populations within the green valley population. Finally, we use the projection of the SOM to verify whether morphological information provided by GalaxyZoo users, for example, if features are visible, can be mapped onto the SOM-generated map. Voting on whether galaxies are smooth, likely ellipticals, or "featured" can reasonably be separated but smaller morphological features (bar, spiral arms) can not. SOMs promise to be a useful tool to map and identify instructive sub-populations in multidimensional galaxy survey feature space, provided they are large enough.