论文标题
学习结构化的高斯人以近似深层合奏
Learning Structured Gaussians to Approximate Deep Ensembles
论文作者
论文摘要
本文建议使用稀疏结构的多元高斯,为用于密集图像预测任务的概率集合模型的输出提供封闭形式的近似器。这是通过预测分布的平均值和协方差的卷积神经网络来实现的,在该分布的平均值和协方差中,逆协方差由稀疏结构的Cholesky矩阵参数化。与蒸馏方法类似,我们的单个网络经过训练,以最大程度地提高预先训练的概率模型的样品的概率,在这项工作中,我们使用了固定的网络集合。一旦训练,我们的紧凑表示形式可用于从近似输出分布中有效绘制空间相关的样品。重要的是,这种方法在正式分布中明确地捕获了预测中的不确定性和结构化相关性,而不是单独采样。这允许直接内省模型,从而实现了学习结构的可视化。此外,该公式还提供了两个好处:样本概率的估计以及在测试时引入任意空间条件。我们证明了我们对单眼深度估计的方法的优点,并表明我们的方法的优势是通过可比的定量性能获得的。
This paper proposes using a sparse-structured multivariate Gaussian to provide a closed-form approximator for the output of probabilistic ensemble models used for dense image prediction tasks. This is achieved through a convolutional neural network that predicts the mean and covariance of the distribution, where the inverse covariance is parameterised by a sparsely structured Cholesky matrix. Similarly to distillation approaches, our single network is trained to maximise the probability of samples from pre-trained probabilistic models, in this work we use a fixed ensemble of networks. Once trained, our compact representation can be used to efficiently draw spatially correlated samples from the approximated output distribution. Importantly, this approach captures the uncertainty and structured correlations in the predictions explicitly in a formal distribution, rather than implicitly through sampling alone. This allows direct introspection of the model, enabling visualisation of the learned structure. Moreover, this formulation provides two further benefits: estimation of a sample probability, and the introduction of arbitrary spatial conditioning at test time. We demonstrate the merits of our approach on monocular depth estimation and show that the advantages of our approach are obtained with comparable quantitative performance.