论文标题

Anodfdnet:用于异常检测的深度差异网络

AnoDFDNet: A Deep Feature Difference Network for Anomaly Detection

论文作者

Wang, Zhixue, Zhang, Yu, Luo, Lin, Wang, Nan

论文摘要

本文提出了基于卷积神经网络和视觉变压器的高速列车图像的新型异常检测方法(AD)方法。与以前的AD作品不同,在该作品中,使用分类,分割或对象检测方法鉴定出单个图像的异常,该方法检测在同一区域的不同时间拍摄的两个图像之间的异常差异。换句话说,我们将单个图像的异常检测问题投入到两个图像的差异检测问题中。提出方法的核心思想是“异常”通常代表异常状态,而不是特定对象,并且该状态应通过一对图像识别。此外,我们引入了一个深度特征差异广告网络(Anodfdnet),该网络充分探讨了视觉变压器和卷积神经网络的潜力。为了验证所提出的阳极的有效性,我们收集了三个数据集,一个差异数据集(DIFF数据集),一个外国身体数据集(FB数据集)和一个机油泄漏数据集(OL数据集)。上面数据集的实验结果证明了提出的方法的优越性。源代码可在https://github.com/wangle53/anodfdnet上找到。

This paper proposed a novel anomaly detection (AD) approach of High-speed Train images based on convolutional neural networks and the Vision Transformer. Different from previous AD works, in which anomalies are identified with a single image using classification, segmentation, or object detection methods, the proposed method detects abnormal difference between two images taken at different times of the same region. In other words, we cast anomaly detection problem with a single image into a difference detection problem with two images. The core idea of the proposed method is that the 'anomaly' usually represents an abnormal state instead of a specific object, and this state should be identified by a pair of images. In addition, we introduced a deep feature difference AD network (AnoDFDNet) which sufficiently explored the potential of the Vision Transformer and convolutional neural networks. To verify the effectiveness of the proposed AnoDFDNet, we collected three datasets, a difference dataset (Diff Dataset), a foreign body dataset (FB Dataset), and an oil leakage dataset (OL Dataset). Experimental results on above datasets demonstrate the superiority of proposed method. Source code are available at https://github.com/wangle53/AnoDFDNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源