论文标题

使用图神经网络的电缆操纵的变形模型的离线学习学习

Offline-Online Learning of Deformation Model for Cable Manipulation with Graph Neural Networks

论文作者

Wang, Changhao, Zhang, Yuyou, Zhang, Xiang, Wu, Zheng, Zhu, Xinghao, Jin, Shiyu, Tang, Te, Tomizuka, Masayoshi

论文摘要

机器人通过机器人操纵可变形的线性对象具有广泛的应用,例如制造和医疗手术。为了完成此类任务,预测变形的精确动力学模型对于稳健控制至关重要。在这项工作中,我们通过提出一种混合脱机方式来应对这一挑战,以稳健和数据效率的方式学习电缆的动态。在离线阶段,我们采用图形神经网络(GNN)纯粹是从仿真数据中学习变形动力学。然后,实时学习线性残差模型,以弥合SIM到真实的间隙。然后将学习的模型用作基于信任区域的模型预测控制器(MPC)的动力学约束来计算最佳机器人运动。在线学习和MPC以闭环方式运行,以鲁棒性完成任务。最后,提供了现有方法的比较结果,以定量显示有效性和鲁棒性。

Manipulating deformable linear objects by robots has a wide range of applications, e.g., manufacturing and medical surgery. To complete such tasks, an accurate dynamics model for predicting the deformation is critical for robust control. In this work, we deal with this challenge by proposing a hybrid offline-online method to learn the dynamics of cables in a robust and data-efficient manner. In the offline phase, we adopt Graph Neural Network (GNN) to learn the deformation dynamics purely from the simulation data. Then a linear residual model is learned in real-time to bridge the sim-to-real gap. The learned model is then utilized as the dynamics constraint of a trust region based Model Predictive Controller (MPC) to calculate the optimal robot movements. The online learning and MPC run in a closed-loop manner to robustly accomplish the task. Finally, comparative results with existing methods are provided to quantitatively show the effectiveness and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源