论文标题

以信息为中心的天气传感数据框架

An Information Centric Framework for Weather Sensing Data

论文作者

Thompson, Robert, Lyons, Eric, Dasgupta, Ishita, Mastorakis, Spyridon, Zink, Michael, Shannigrahi, Susmit

论文摘要

由于高分辨率雷达,有效的计算算法和高性能计算设施,在过去的十年中,天气感应和预测变得越来越准确。通过分布式和联合的雷达网络,科学家可以根据有利于公共安全,商业,运输和其他领域的天气条件进行高分辨率观察。尽管天气雷达是关键的基础设施,但它们通常位于网络连通性较差的偏远地区。从这些雷达中获取的数据通常会延迟或丢失,甚至缺乏适当的同步,从而导致了次优的天气预测。这项工作将指定的数据网络(NDN)应用于天气传感雷达联合会,以进行有效的内容和检索。我们基于层次命名方案确定天气数据,该方案使我们能够明确访问所需的文件。我们证明,与TCP/IP中的基于窗口的机制相比,基于NDN的机制可以提高数据质量,降低不确定性并增强天气预测。我们的评估表明,该命名方案可以有效数据检索,而与TCP/IP中的基于窗口的机制相比,基于NDN的机制可提高数据质量,降低不确定性并增强天气预测。

Weather sensing and forecasting has become increasingly accurate in the last decade thanks to high-resolution radars, efficient computational algorithms, and high-performance computing facilities. Through a distributed and federated network of radars, scientists can make high-resolution observations of the weather conditions on a scale that benefits public safety, commerce, transportation, and other fields. While weather radars are critical infrastructure, they are often located in remote areas with poor network connectivity. Data retrieved from these radars are often delayed or lost, or even lack proper synchronization, resulting in sub-optimal weather prediction. This work applies Named Data Networking (NDN) to a federation of weather sensing radars for efficient content addressing and retrieval. We identify weather data based on a hierarchical naming scheme that allows us to explicitly access desired files. We demonstrate that compared to the window-based mechanism in TCP/IP, an NDN based mechanism improves data quality, reduces uncertainty, and enhances weather prediction. Our evaluation demonstrates that this naming scheme enables effective data retrieval, while compared to the window-based mechanism in TCP/IP, an NDN based mechanism improves data quality, reduces uncertainty, and enhances weather prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源