论文标题

壁画:低潜伏期心输出量监测的流量重建和分割,使用深度伪影抑制和分割

FReSCO: Flow Reconstruction and Segmentation for low latency Cardiac Output monitoring using deep artifact suppression and segmentation

论文作者

Jaubert, Olivier, Montalt-Tordera, Javier, Brown, James, Knight, Daniel, Arridge, Simon, Steeden, Jennifer, Muthurangu, Vivek

论文摘要

目的:对心脏输出(CO)的实时监测需要低潜伏期重建和实时阶段对比度MR(PCMR)的分割,这先前很难执行。在这里,我们提出了一个深度学习框架,用于“低潜伏期心输出监测的流量重建和分割”(壁画)。 方法:对深层抑制和分割U-NET进行了独立训练。使用可变密度的螺旋采样模式合成采样呼吸固定螺旋PCMR数据(n = 516),并栅格以创建混蛋数据以训练trafact抑制u-net。分段数据(n = 96)的一个子集并用于训练分割U-NET。实时的螺旋PCMR被预期获取,然后在扫描仪的低潜伏期(在休息,锻炼和恢复期间)的10个健康受试者中使用训练有素的模型(Fresco)重建和细分。将通过壁画获得的CO与参考REST CO进行了比较,并进行静止和运动压缩传感(CS)CO。 结果:扫描仪前瞻性证明了壁画。可以以622ms的平均潜伏期可视化敲打,中风量和CO可视化。与REST(偏置= -0.21+-0.50 l/min,p = 0.246)或峰值练习时的CS相比,没有明显的差异(偏见= 0.12+-0.48 l/min,p = 0.458)。 结论:在运动过程中,成功证明了壁画用于对CO进行实时监测,并可以提供方便的工具来评估对一系列压力源的血液动力学反应。

Purpose: Real-time monitoring of cardiac output (CO) requires low latency reconstruction and segmentation of real-time phase contrast MR (PCMR), which has previously been difficult to perform. Here we propose a deep learning framework for 'Flow Reconstruction and Segmentation for low latency Cardiac Output monitoring' (FReSCO). Methods: Deep artifact suppression and segmentation U-Nets were independently trained. Breath hold spiral PCMR data (n=516) was synthetically undersampled using a variable density spiral sampling pattern and gridded to create aliased data for training of the artifact suppression U-net. A subset of the data (n=96) was segmented and used to train the segmentation U-net. Real-time spiral PCMR was prospectively acquired and then reconstructed and segmented using the trained models (FReSCO) at low latency at the scanner in 10 healthy subjects during rest, exercise and recovery periods. CO obtained via FReSCO was compared to a reference rest CO and rest and exercise Compressed Sensing (CS) CO. Results: FReSCO was demonstrated prospectively at the scanner. Beat-to-beat heartrate, stroke volume and CO could be visualized with a mean latency of 622ms. No significant differences were noted when compared to reference at rest (Bias = -0.21+-0.50 L/min, p=0.246) or CS at peak exercise (Bias=0.12+-0.48 L/min, p=0.458). Conclusion: FReSCO was successfully demonstrated for real-time monitoring of CO during exercise and could provide a convenient tool for assessment of the hemodynamic response to a range of stressors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源