论文标题
机器学习辅助的原子结构鉴定了原子力显微镜图像的界面离子水合物
Machine learning aided atomic structure identification of interfacial ionic hydrates from atomic force microscopy images
论文作者
论文摘要
与广泛的应用领域和自然过程相关,界面离子水合已经通过超高分辨率原子力显微镜(AFM)广泛研究。但是,AFM信号与研究系统之间的复杂关系使得很难单独从AFM图像中确定这种复杂系统的原子结构。使用机器学习,我们基于AFM图像的界面水/离子水合物的原子结构进行了精确鉴定,包括每个原子的位置和水分子的方向。此外,发现可以通过使用易于可用的界面水数据训练的神经网络(NN)进行转移学习来实现离子水合物的结构预测。因此,这项工作提供了一种有效且经济的方法论,不仅开辟了从AFM图像确定更复杂系统的原子结构的途径,而且还可以帮助解释其他涉及复杂实验结果的其他科学范围的研究。
Relevant to broad applied fields and natural processes, interfacial ionic hydrates has been widely studied by ultrahigh-resolution atomic force microscopy (AFM). However, the complex relationship between AFM signal and the investigated system makes it difficult to determine the atomic structure of such complex system from AFM images alone. Using machine learning, we achieved precise identification of the atomic structures of interfacial water/ionic hydrates based on AFM images, including the position of each atom and the orientation of water molecules. Furthermore, it was found that structure prediction of ionic hydrates can be achieved cost-effectively by transfer learning using neural network (NN) trained with easily available interfacial water data. Thus, this work provides an efficient and economical methodology which not only opens up avenues to determine atomic structures of more complex systems from AFM images, but may also help to interpret other science-wide studies involving sophisticated experimental results.