论文标题
从RGB-D图像中学习地球知识的本地特征
Learning Geodesic-Aware Local Features from RGB-D Images
论文作者
论文摘要
大多数现有的手工制作和基于学习的本地描述符仍然充其量大约是仿射图像转换的大约不变的,通常会忽略可变形的表面。在本文中,我们提出了一种新方法来从RGB-D图像中计算描述符(其中RGB指的是像素颜色亮度,并且D代表深度信息),这些信息是等距非刚性变形的不变的,并且可以扩展变化和旋转。我们提出的描述策略基于使用表面测量学的未经局部本地图像贴片的学习特征表示的关键思想。我们设计了两种互补的本地描述符策略,以有效地计算地质感知功能:一个基于手工二进制测试(命名Geobit)的有效二进制描述符,以及一个带有学习的描述符(Geopatch),其中包括卷积神经网络(CNN)来计算特征。在使用真实和公开可用的RGB-D数据基准的不同实验中,它们始终优于匹配分数以及对象检索和非矛盾的表面跟踪实验的最先进的手工制作和基于学习的图像和RGB-D描述符,以及可比的处理时间。我们还向社区提供了一个新的数据集,并具有对不同物体(衬衫,布,绘画,袋子)的RGB-D图像的准确匹配注释,并经历了强烈的非刚性变形,以评估可变形的表面对应算法的基准。
Most of the existing handcrafted and learning-based local descriptors are still at best approximately invariant to affine image transformations, often disregarding deformable surfaces. In this paper, we take one step further by proposing a new approach to compute descriptors from RGB-D images (where RGB refers to the pixel color brightness and D stands for depth information) that are invariant to isometric non-rigid deformations, as well as to scale changes and rotation. Our proposed description strategies are grounded on the key idea of learning feature representations on undistorted local image patches using surface geodesics. We design two complementary local descriptors strategies to compute geodesic-aware features efficiently: one efficient binary descriptor based on handcrafted binary tests (named GeoBit), and one learning-based descriptor (GeoPatch) with convolutional neural networks (CNNs) to compute features. In different experiments using real and publicly available RGB-D data benchmarks, they consistently outperforms state-of-the-art handcrafted and learning-based image and RGB-D descriptors in matching scores, as well as in object retrieval and non-rigid surface tracking experiments, with comparable processing times. We also provide to the community a new dataset with accurate matching annotations of RGB-D images of different objects (shirts, cloths, paintings, bags), subjected to strong non-rigid deformations, for evaluation benchmark of deformable surface correspondence algorithms.