论文标题

部分可观测时空混沌系统的无模型预测

A conservative multiscale method for stochastic highly heterogeneous flow

论文作者

Wang, Yiran, Chung, Eric, Fu, Shubin

论文摘要

在本文中,我们提出了一种局部模型减少方法,用于随机且高度异质介质中的地下流量问题。为了确保质量保护,我们考虑流动问题的混合配方,并旨在解决粗网格中的问题以降低大型系统的复杂性。我们将整个问题分解为训练和测试阶段,即具有不同参数的离线粗网格多尺度生成阶段和在线模拟阶段。在训练阶段,构建了与参数无关和小维的多尺度函数空间,其中包括媒体,源和边界信息。基础生成阶段的关键部分是解决了特定定义的一些本地问题。对于独立于参数的基础空间,可以有效地解决与粗网格中不同渗透率样本相对应的相关问题,而无需反复为每个新样本构造多尺度空间。提出了对所提出方法收敛性的严格分析。特别是,我们考虑了一个概括误差,其中用一个源构建的碱将用于其他源。在数值实验中,我们将提出的方法应用于单相和TWOPHASE流量问题。 2D和3D代表模型的仿真结果证明了所提出的模型还原技术的高精度和令人印象深刻的性能。

In this paper, we propose a local model reduction approach for subsurface flow problems in stochastic and highly heterogeneous media. To guarantee the mass conservation, we consider the mixed formulation of the flow problem and aim to solve the problem in a coarse grid to reduce the complexity of a large-scale system. We decompose the entire problem into a training and a testing stage, namely the offline coarse-grid multiscale basis generation stage and online simulation stage with different parameters. In the training stage, a parameter-independent and small-dimensional multiscale basis function space is constructed, which includes the media, source and boundary information. The key part of the basis generation stage is to solve some local problems defined specially. With the parameter-independent basis space, one can efficiently solve the concerned problems corresponding to different samples of permeability field in a coarse grid without repeatedly constructing a multiscale space for each new sample. A rigorous analysis on convergence of the proposed method is proposed. In particular, we consider a generalization error, where bases constructed with one source will be used to a different source. In the numerical experiments, we apply the proposed method for both single-phase and twophase flow problems. Simulation results for both 2D and 3D representative models demonstrate the high accuracy and impressive performance of the proposed model reduction techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源