论文标题
$ ϕ_ε $ $协调的顶点代数模块产生的环形谎言模块的不可还原模块
Irreducible modules of toroidal Lie algebras arising from $ϕ_ε$-coordinated modules of vertex algebras
论文作者
论文摘要
在本文中,对于\ mathbb {z} $中的每一个$ε\,我们通过某些派生引入了2型lie lie代数的扩展。基于顶点代数的$ ϕ_ε $协调的模块理论,我们为这个扩展的圆环谎言代数对一类不可约的最高权重模块进行了明确的实现。当$ε= 1 $时,这可以实现Billig首先建造的Toroidal Extended extine lie代数的某些不可还原模块。
In this paper, for every $ε\in \mathbb{Z}$, we introduce an extension of the 2-toroidal Lie algebra by certain derivations. Based on the $ϕ_ε$-coordinated modules theory for vertex algebras, we give an explicit realization of a class of irreducible highest weight modules for this extended toroidal Lie algebra. When $ε=1$, this affords a realization of certain irreducible modules for the toroidal extended affine Lie algebras first constructed by Billig.