论文标题
在旋转和轨道光学电流的螺旋分解上再多一次
One more time on the helicity decomposition of spin and orbital optical currents
论文作者
论文摘要
在近端和非传播方案中的单色光场中,对光波线性动量密度的螺旋表示表示。在本说明中,我们将这种表示形式推广到非单色光场。我们发现,与单色的情况不同,线性动量密度(又称poynting矢量除以$ c^2 $)也不会分离为右手和左手术语的总和,即使在所谓的电力磁性民主中通过平均电力和磁性贡献来强制执行。然而,对于准诚型光,这种分离在时间平移后大约恢复。本文是在迈克尔·贝里爵士(Michael Berry)的80美元生日之际致力于迈克尔·贝里爵士(Sir Michael Berry)。
The helicity representation of the linear momentum density of a light wave is well understood for monochromatic optical fields in both paraxial and non-paraxial regimes of propagation. In this note we generalize such representation to nonmonochromatic optical fields. We find that, differently from the monochromatic case, the linear momentum density, aka the Poynting vector divided by $c^2$, does not separate into the sum of right-handed and left-handed terms, even when the so-called electric-magnetic democracy in enforced by averaging the electric and magnetic contributions. However, for quasimonochromatic light, such a separation is approximately restored after time-averaging. This paper is dedicated to Sir Michael Berry on the occasion of his $80$th birthday.