论文标题

用MaxSat优化二进制决策图进行分类

Optimizing Binary Decision Diagrams with MaxSAT for classification

论文作者

Hu, Hao, Huguet, Marie-José, Siala, Mohamed

论文摘要

对可解释的人工智能(XAI)进行关键决策的日益兴趣激发了对可解释的机器学习(ML)模型的需求。实际上,由于其结构(尤其是小尺寸),这些模型本质上是可以被人类理解的。最近,提出了几种计算此类模型的精确方法,以通过提供更紧凑的模型或更好的预测质量来克服传统启发式方法的弱点。 尽管它们对布尔函数的压缩表示,但二进制决策图(BDD)并没有像其他可解释的ML模型一样获得足够的兴趣。在本文中,我们首先提出了基于SAT的模型来学习最佳的BDD(根据功能数量),以对所有输入示例进行分类。然后,我们将编码提升为MaxSat模型,以在有限的深度学习最佳BDD,从而最大程度地将示例数量正确分类。最后,我们通过引入一种通过MaxSAT模型合并BDD的兼容子树的方法来解决碎片问题。我们的实证研究表明,与最先进的方法相比,在预测质量和内外的方法(即较轻的尺寸)方面,提出的方法明显好处。

The growing interest in explainable artificial intelligence (XAI) for critical decision making motivates the need for interpretable machine learning (ML) models. In fact, due to their structure (especially with small sizes), these models are inherently understandable by humans. Recently, several exact methods for computing such models are proposed to overcome weaknesses of traditional heuristic methods by providing more compact models or better prediction quality. Despite their compressed representation of Boolean functions, Binary decision diagrams (BDDs) did not gain enough interest as other interpretable ML models. In this paper, we first propose SAT-based models for learning optimal BDDs (in terms of the number of features) that classify all input examples. Then, we lift the encoding to a MaxSAT model to learn optimal BDDs in limited depths, that maximize the number of examples correctly classified. Finally, we tackle the fragmentation problem by introducing a method to merge compatible subtrees for the BDDs found via the MaxSAT model. Our empirical study shows clear benefits of the proposed approach in terms of prediction quality and intrepretability (i.e., lighter size) compared to the state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源