论文标题
线性和非线性抛物线前向后问题
Linear and nonlinear parabolic forward-backward problems
论文作者
论文摘要
本文的目的是研究具有抛物线前向后结构的几个线性和非线性方程的适当性,并强调它们之间的相似性和差异。矩阵的固定kolmogorov方程$ y \ partial_x u - \ partial_ {yy} u = f $在矩形中。我们首先证明该方程式承认有限数量的单数解决方案,我们提供了明确的结构。因此,当$ f $满足有限数量的正交条件时,与光滑源术语相关的Kolmogorov方程的解决方案是规律的。这类似于多边形域中椭圆形问题中众所周知的现象。 然后,我们将该理论扩展到vlasov- poisson-fokker--planck系统,并将两个Quasilinear方程式扩展到:Burgers类型方程$ \ partial_x u- \ partial_x u- \ partial_ {yy} u = f $ in Linear shear Floff in of Prandtl System of Prandtl系统的循环范围,循环到循环范围的界线, 符号。因此,我们重新审视了Iyer和Masmoudi最近一项工作的一部分。对于后者的两个准方程,我们引入了变量的几何变化,从而简化了分析。在这些新变量中,线性差分运算符非常接近kolmogorov操作员$ y \ partial_x -\ partial_ {yy} $。介绍了线性理论,我们证明了在有限的编成歧视中,与某些非线性正交条件相对应的数据中的常规解决方案的存在和唯一性。
The purpose of this paper is to investigate the well-posedness of several linear and nonlinear equations with a parabolic forward-backward structure, and to highlight the similarities and differences between them. The epitomal linear example will be the stationary Kolmogorov equation $y\partial_x u -\partial_{yy} u=f$ in a rectangle. We first prove that this equation admits a finite number of singular solutions, of which we provide an explicit construction. Hence, the solutions to the Kolmogorov equation associated with a smooth source term are regular if and only if $f$ satisfies a finite number of orthogonality conditions. This is similar to well-known phenomena in elliptic problems in polygonal domains. We then extend this theory to a Vlasov--Poisson--Fokker--Planck system, and to two quasilinear equations: the Burgers type equation $u \partial_x u - \partial_{yy} u = f$ in the vicinity of the linear shear flow, and the Prandtl system in the vicinity of a recirculating solution, close to the line where the horizontal velocity changes sign. We therefore revisit part of a recent work by Iyer and Masmoudi. For the two latter quasilinear equations, we introduce a geometric change of variables which simplifies the analysis. In these new variables, the linear differential operator is very close to the Kolmogorov operator $y\partial_x -\partial_{yy}$. Stepping on the linear theory, we prove existence and uniqueness of regular solutions for data within a manifold of finite codimension, corresponding to some nonlinear orthogonality conditions.