论文标题

增强MOOC的概念建议在异质信息网络中

Reinforced MOOCs Concept Recommendation in Heterogeneous Information Networks

论文作者

Gong, Jibing, Wan, Yao, Liu, Ye, Li, Xuewen, Zhao, Yi, Wang, Cheng, Lin, Yuting, Fang, Xiaohan, Feng, Wenzheng, Zhang, Jingyi, Tang, Jie

论文摘要

通过Internet提供开放访问和广泛互动参与的大规模开放在线课程(MOOC)迅速成为在线学习和远程学习的首选方法。几个MOOC平台当然为用户提供服务,以改善用户的学习经验。尽管这项服务有用,但我们认为,向用户推荐课程可能会忽略其不同程度的专业知识。为了减轻这一差距,我们在本文中研究了一个有趣的概念建议问题,可以将其视为以细粒度的方式向用户推荐知识。我们提出了一种新的方法,称为Hincrec-rl,用于MOOC中的概念建议,该方法基于异质信息网络和强化学习。特别是,我们建议在增强学习框架内塑造概念问题,以表征用户与MOOC中知识概念之间的动态互动。此外,我们建议将用户,课程,视频和概念之间的互动形成异质信息网络(HIN),以更好地了解语义用户表示。然后,我们使用一个注意力图神经网络来代表HIN中的用户,基于元路径。在从中国MOOC平台Xuetangx收集的现实世界数据集上进行了广泛的实验,以验证我们提出的HINCREC-RL的功效。实验结果和分析表明,我们提出的Hincrec-RL与几种最先进的模型进行比较时的性能很好。

Massive open online courses (MOOCs), which offer open access and widespread interactive participation through the internet, are quickly becoming the preferred method for online and remote learning. Several MOOC platforms offer the service of course recommendation to users, to improve the learning experience of users. Despite the usefulness of this service, we consider that recommending courses to users directly may neglect their varying degrees of expertise. To mitigate this gap, we examine an interesting problem of concept recommendation in this paper, which can be viewed as recommending knowledge to users in a fine-grained way. We put forward a novel approach, termed HinCRec-RL, for Concept Recommendation in MOOCs, which is based on Heterogeneous Information Networks and Reinforcement Learning. In particular, we propose to shape the problem of concept recommendation within a reinforcement learning framework to characterize the dynamic interaction between users and knowledge concepts in MOOCs. Furthermore, we propose to form the interactions among users, courses, videos, and concepts into a heterogeneous information network (HIN) to learn the semantic user representations better. We then employ an attentional graph neural network to represent the users in the HIN, based on meta-paths. Extensive experiments are conducted on a real-world dataset collected from a Chinese MOOC platform, XuetangX, to validate the efficacy of our proposed HinCRec-RL. Experimental results and analysis demonstrate that our proposed HinCRec-RL performs well when comparing with several state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源