论文标题
具有较小种间反击力的关键椭圆系统的隔离解决方案
Segregated solutions for a critical elliptic system with a small interspecies repulsive force
论文作者
论文摘要
我们考虑椭圆系统$$-ΔU_I= u_i^3+\ sum \ limits_ {j = 1 \ atop j \ not = i}^{q+1} {β_{β_{ij}} u_i u_i u_j^u_j^2 \^2 \ \ \ \ \ \ \ \ \ hbox {in} $α:=β_{ij} $和$β:=β_{i(q+1)} =β_{(q+1)j} $,对于任何$ i,j = 1,j = 1,\ dots,q。$β<0 $ |β|β| $ | $ wif $ | | $ q $多边形的顶点放在不同的大圆圈中,彼此链接,最后一个组件$ u_ {q+1} $看起来像单个方程式的径向阳性解决方案。
We consider the elliptic system $$-Δu_i = u_i^3+\sum\limits_{j=1\atop j\not=i}^{q+1}{ β_{ij}}u_i u_j^2\ \hbox{in}\ \mathbb R^4, \ i=1,\dots,q+1.$$ when $α:=β_{ij}$ and $β:=β_{i(q+1)}=β_{(q+1)j}$ for any $i,j=1,\dots,q.$ If $β<0$ and $|β|$ is small enough we build solutions such that each component $u_{1},\dots,u_q$ blows-up at the vertices of $q$ polygons placed in different great circles which are linked to each other, and the last component $u_{q+1}$ looks like the radial positive solution of the single equation.