论文标题

传播运输方程的规律性。 Littlewood-Paley方法

Propagation of regularity for transport equations. A Littlewood-Paley approach

论文作者

Meyer, David, Seis, Christian

论文摘要

众所周知,具有SOBOLEV速度场的线性对流方程的规律性非常差:溶液仅传播对数顺序的衍生物,该衍生物可以根据合适的Gagliardo seminors进行测量。我们提出了一种基于Littlewood-Paley理论的规律研究的新方法,从而衡量了BESOV规范的规律性。我们恢复文献中可用的结果,并最佳地扩展到扩散设置。结果,我们在零扩散率极限中的收敛速率得出了急剧的界限。

It is known that linear advection equations with Sobolev velocity fields have very poor regularity properties: Solutions propagate only derivatives of logarithmic order, which can be measured in terms of suitable Gagliardo seminorms. We propose a new approach to the study of regularity that is based on Littlewood-Paley theory, thus measuring regularity in terms of Besov norms. We recover the results that are available in the literature and extend these optimally to the diffusive setting. As a consequence, we derive sharp bounds on rates of convergence in the zero-diffusivity limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源