论文标题

在三维双方纳米粒子阵列中实现超手体表面晶格共振

Realization of superchiral surface lattice resonances in three-dimensional bipartite nanoparticle arrays

论文作者

Tse, Joshua T. Y., Ong, H. C.

论文摘要

光学手性(OC)是电磁波的基本特性,它在管理手性光 - 物质相互作用中起着关键作用。在这里,我们演示了如何获得由纳米颗粒阵列中局部表面等离子体(LSP)和衍射雷利异常(RAS)之间的杂交产生的超细晶格共振(SLR)。我们首先通过角度分辨的反射率光谱和有限差分时间域(FDTD)模拟研究了2D Au单核纳米棒阵列中LSP和RAS之间的耦合常数。然后,通过时间耦合模式理论(CMT)分析复杂的分散关系和SLR的近场,以制定耦合常数对纳米棒偶极方向的依赖性。发现TE和TM耦合常数在很大程度上取决于位于垂直于RA传播方向的平面中的偶极子的方向。通过使用两个正交的纳米棒,可以独立地激发TE-SLR和TM-SLR。然后,我们将CMT方法扩展到基于3D两部分纳米棒的合理设计超胸腔SLR。 OC被证明取决于两个纳米棒之间的相对位移,近场强度以及耦合常数与SLR共振的Q因子之间的相互作用。我们的平均OC比整个表面上的圆形极化平面波强27倍,具有大面积的手性表面波,可用于基于手性的应用。

Optical chirality (OC) is a fundamental property of electromagnetic waves that plays a key role in governing chiral light-matter interaction. Here, we demonstrate how to obtain superchiral surface lattice resonances (SLRs), which arise from the hybridization between localized surface plasmons (LSPs) and diffractive Rayleigh anomalies (RAs), in nanoparticle arrays. We first study the coupling constants between LSPs and RAs in 2D Au monopartite nanorod arrays by angle-resolved reflectivity spectroscopy and finite-difference time-domain (FDTD) simulations. The complex dispersion relations and the near-fields of SLRs are then analyzed by temporal coupled-mode theory (CMT) for formulating the dependence of the coupling constants on the dipole orientation of the nanorod. The TE and TM coupling constants are found to depend strongly on the orientation of the dipole lying in the plane perpendicular to the propagation direction of RA. By using two orthogonally oriented nanorods, TE- and TM-SLRs can be excited independently. We then extend the CMT approach to rationally design superchiral SLRs based on 3D bipartite nanorods. The OC is shown to depend on the relative displacement between two nanorods, the near-field strength, and the interplay between the coupling constants and the Q-factor of the SLR resonance. We have achieved an averaged OC of 27 times stronger than that of the circularly polarized plane wave over the entire surface, featuring large area chiral surface waves that are useful for chirality-based applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源