论文标题
完整的calabi-yau指标在两个分隔线的补充中
Complete Calabi-Yau metrics in the complement of two divisors
论文作者
论文摘要
我们在尺寸至少三个尺寸的fano歧管中构建了新的完整的calabi-yau指标$ d $,当时$ d $由两个横向相交的平滑除数。渐近几何形状是建立在卡拉比·安萨兹(Calabi Ansatz)的概括上的,与非架构的蒙格 - 安帕尔方程有关。
We construct new complete Calabi-Yau metrics on the complement of an anticanonical divisors $D$ in a Fano manifold of dimension at least three, when $D$ consists of two transversely intersecting smooth divisors. The asymptotic geometry is modeled on a generalization of the Calabi ansatz, related to the non-archimedean Monge-Ampère equation.