论文标题

DEEP-LCC:混合交通流量中具有数据的预测性领先巡航控制

DeeP-LCC: Data-EnablEd Predictive Leading Cruise Control in Mixed Traffic Flow

论文作者

Wang, Jiawei, Zheng, Yang, Li, Keqiang, Xu, Qing

论文摘要

为了控制连接和自动驾驶汽车(CAVS),大多数现有方法都集中在基于模型的策略上。他们需要明确了解人类驱动的车辆的汽车动力学,这些动力是非平凡的,才能准确识别。在本文中,我们不再依靠参数式汽车跟随模型,而是引入了一个数据驱动的非参数策略,称为Deep-LCC(具有数据支持的预测性领先巡航控制),以实现对混合流量中CAV的安全和最佳控制。我们首先利用Willems的基本引理来获得以数据为中心的混合交通行为表示。通过对混合流量的可控性和可观察性特性的严格分析,这是合理的。然后,我们采用一种退化的地平线策略来在每个时间步骤中解决一个有限的最佳控制问题,其中将输入/输出约束纳入了无碰撞保证。与需要精确模型的标准预测控制器相比,数值实验验证了深-LCC的性能。多次非线性交通模拟进一步证实了其在提高交通效率,推动安全性和燃油经济性方面的巨大潜力。

For the control of connected and autonomous vehicles (CAVs), most existing methods focus on model-based strategies. They require explicit knowledge of car-following dynamics of human-driven vehicles that are non-trivial to identify accurately. In this paper, instead of relying on a parametric car-following model, we introduce a data-driven non-parametric strategy, called DeeP-LCC (Data-EnablEd Predictive Leading Cruise Control), to achieve safe and optimal control of CAVs in mixed traffic. We first utilize Willems' fundamental lemma to obtain a data-centric representation of mixed traffic behavior. This is justified by rigorous analysis on controllability and observability properties of mixed traffic. We then employ a receding horizon strategy to solve a finite-horizon optimal control problem at each time step, in which input/output constraints are incorporated for collision-free guarantees. Numerical experiments validate the performance of DeeP-LCC compared to a standard predictive controller that requires an accurate model. Multiple nonlinear traffic simulations further confirm its great potential on improving traffic efficiency, driving safety, and fuel economy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源