论文标题
使用多保真数据集,从元素属性的半导体中的杂质电荷过渡水平的机器学习
Machine learning for impurity charge-state transition levels in semiconductors from elemental properties using multi-fidelity datasets
论文作者
论文摘要
量化半导体中杂质的电荷过渡能水平对于理解和设计其光电特性至关重要,用于从太阳能光伏到红外激光器的应用。虽然可以准确地测量和计算这些过渡水平,但这种努力是耗时的,更快的预测方法将是有益的。在这里,我们大大减少了使用多保真数据集预测杂质过渡水平的通常时间,并采用基于元素属性和杂质位置的功能的机器学习方法。我们使用从低保真度(即局部密度近似或广义梯度近似)的过渡水平,使用最近提出的改进的带对准方案校正了密度功能理论(DFT)计算,从而很好地良好地对高氧的转变水平从高效率DFT(即Hybrid HSE06)纠正。与在更有限的高保真值训练的模型相比,该模型适合大型多保真数据库的精度提高了精度。至关重要的是,在我们的方法中,当使用多保真数据时,模型训练并不需要高保真值,从而大大降低了训练模型所需的计算成本。我们的机器学习模型的过渡水平具有均方根平方(平均绝对)误差为0.36(0.27)EV与高效率混合功能值,当时来自II-VI和III-V家族的14个半导体系统平均。作为在其他系统上使用的指南,我们评估了模拟数据上的模型,以显示预期精度水平作为带隙的函数,以获取新的感兴趣的材料。最后,我们使用该模型来预测所有锌混合III-V和II-VI系统中杂质电荷过渡水平的完整空间。
Quantifying charge-state transition energy levels of impurities in semiconductors is critical to understanding and engineering their optoelectronic properties for applications ranging from solar photovoltaics to infrared lasers. While these transition levels can be measured and calculated accurately, such efforts are time-consuming and more rapid prediction methods would be beneficial. Here, we significantly reduce the time typically required to predict impurity transition levels using multi-fidelity datasets and a machine learning approach employing features based on elemental properties and impurity positions. We use transition levels obtained from low-fidelity (i.e., local-density approximation or generalized gradient approximation) density functional theory (DFT) calculations, corrected using a recently proposed modified band alignment scheme, which well-approximates transition levels from high-fidelity DFT (i.e., hybrid HSE06). The model fit to the large multi-fidelity database shows improved accuracy compared to the models trained on the more limited high-fidelity values. Crucially, in our approach, when using the multi-fidelity data, high-fidelity values are not required for model training, significantly reducing the computational cost required for training the model. Our machine learning model of transition levels has a root mean squared (mean absolute) error of 0.36 (0.27) eV vs high-fidelity hybrid functional values when averaged over 14 semiconductor systems from the II-VI and III-V families. As a guide for use on other systems, we assessed the model on simulated data to show the expected accuracy level as a function of bandgap for new materials of interest. Finally, we use the model to predict a complete space of impurity charge-state transition levels in all zinc blende III-V and II-VI systems.