论文标题

用于机械感应和知觉关联学习的神经形态超材料

Neuromorphic metamaterials for mechanosensing and perceptual associative learning

论文作者

Riley, Katherine S., Koner, Subhadeep, Osorio, Juan C., Yu, Yongchao, Morgan, Harith, Udani, Janav P., Sarles, Stephen A., Arrieta, Andres F.

论文摘要

具有神经力学功能的物理系统有望具有直接编码的自主性和智能的结构。我们报告了一类神经形态的畸形,这些神经材料体现了生物启发的机械感应,记忆和学习功能,该功能通过利用机械不稳定性和灵活的回忆材料而获得。我们的原型系统包括一个多稳态的超材料,其双态单元在大面积上过滤,扩增和将外部机械输入转换为使用压电性的简单电信号。我们使用非挥发性柔性回忆录来记录这些机械转导的信号,这些弹性回忆录会记住机械输入的序列,从而提供了一种在可测量的材料状态下存储空间分布的机械信号的手段。顺序机械输入产生的累积的恢复变化使我们能够将Hopfield网络物理编码到我们的神经形态的超材料中。该物理网络学习了一系列外部空间分布的输入模式。至关重要的是,可以从我们的备忘录的最终累积状态中检索到我们神经形态质材中的学习模式。因此,我们的系统具有在没有监督培训的情况下学习的能力,并保留具有最小外部开销的空间分布的输入。我们系统的体现的机械感应,记忆和学习能力为合成神经形态的超材料建立了途径,从而可以学习类似触摸的感觉,涵盖了机器人技术,自主系统,可穿戴设备和变形结构的大面积。

Physical systems exhibiting neuromechanical functions promise to enable structures with directly encoded autonomy and intelligence. We report on a class of neuromorphic metamaterials embodying bioinspired mechanosensing, memory, and learning functionalities obtained by leveraging mechanical instabilities and flexible memristive materials. Our prototype system comprises a multistable metamaterial whose bistable units filter, amplify, and transduce external mechanical inputs over large areas into simple electrical signals using piezoresistivity. We record these mechanically transduced signals using non-volatile flexible memristors that remember sequences of mechanical inputs, providing a means to store spatially distributed mechanical signals in measurable material states. The accumulated memristance changes resulting from the sequential mechanical inputs allow us to physically encode a Hopfield network into our neuromorphic metamaterials. This physical network learns a series of external spatially distributed input patterns. Crucially, the learned patterns input into our neuromorphic metamaterials can be retrieved from the final accumulated state of our memristors. Therefore, our system exhibits the ability to learn without supervised training and retain spatially distributed inputs with minimal external overhead. Our system's embodied mechanosensing, memory, and learning capabilities establish an avenue for synthetic neuromorphic metamaterials enabling the learning of touch-like sensations covering large areas for robotics, autonomous systems, wearables, and morphing structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源