论文标题

弱监督语义细分的区域语义对比度和聚合

Regional Semantic Contrast and Aggregation for Weakly Supervised Semantic Segmentation

论文作者

Zhou, Tianfei, Zhang, Meijie, Zhao, Fang, Li, Jianwu

论文摘要

从弱标记的(例如,图像标签)学习语义分割是具有挑战性的,因为很难从稀疏的语义标签中推断致密的对象区域。尽管经过广泛的研究,但大多数当前的努力还是直接从单个图像或图像对携带的有限语义注释中学习,并难以获得整体位置图。我们的作品从一个新颖的角度来减轻这一点,通过在丰富的语义环境中探索丰富的弱标记培训数据,以进行网络学习和推理。特别是,我们提出了区域语义对比和聚集(RCA)。 RCA配备了区域内存库,可存储培训数据中出现的大量,多样化的对象模式,这是对数据集级别语义结构的强烈支持。特别是,我们建议i)语义与通过对比大量的分类对象区域来驱动网络学习的语义对比,从而导致更全面的对象模式理解,ii)语义聚集,以收集记忆中各种关系环境以丰富语义表示。通过这种方式,RCA具有强大的精细语义理解能力,并最终建立了两个流行的基准测试,即Pascal VOC 2012和Coco 2014。

Learning semantic segmentation from weakly-labeled (e.g., image tags only) data is challenging since it is hard to infer dense object regions from sparse semantic tags. Despite being broadly studied, most current efforts directly learn from limited semantic annotations carried by individual image or image pairs, and struggle to obtain integral localization maps. Our work alleviates this from a novel perspective, by exploring rich semantic contexts synergistically among abundant weakly-labeled training data for network learning and inference. In particular, we propose regional semantic contrast and aggregation (RCA) . RCA is equipped with a regional memory bank to store massive, diverse object patterns appearing in training data, which acts as strong support for exploration of dataset-level semantic structure. Particularly, we propose i) semantic contrast to drive network learning by contrasting massive categorical object regions, leading to a more holistic object pattern understanding, and ii) semantic aggregation to gather diverse relational contexts in the memory to enrich semantic representations. In this manner, RCA earns a strong capability of fine-grained semantic understanding, and eventually establishes new state-of-the-art results on two popular benchmarks, i.e., PASCAL VOC 2012 and COCO 2014.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源