论文标题

密度扰动对卵石积聚的行星形成的作用

The role of density perturbation on planet formation by pebble accretion

论文作者

Andama, Geoffrey, Ndugu, Nelson, Anguma, Simon . K., Jurua, Edward

论文摘要

原球盘表现出各种差距和灰尘材料环,被认为是与正在进行的行星形成和其他几个物理过程相关的压力最大值的体现。流体动力盘模拟进一步表明,多个灰尘环状结构可能无处不在。在最近的过去,已经表明,尘埃可以为行星形成提供合适的途径。我们研究全球扰动的椎间盘如何通过卵石积聚影响尘埃的演化和核心生长。我们进行了具有高斯压力曲线的全球盘模拟,并与气体密度的全局扰动,模仿波状结构以及在压力最小值和最大值处进行模拟的行星核心形成。使用高斯压力曲线,在圆盘寿命的前0.1 myrs中,内盘区域中的谷物极度耗尽。全球压力颠簸将灰尘材料限制在数百万年中,具体取决于扰动的强度。在颠簸的圆盘中形成的多种核心,在光滑的圆盘中不可行的位置具有巨大的核心,在光滑的位置,在光滑圆盘中形成大量核心的位置的小核心。我们得出的结论是,由行星和/或其他物理现象产生的压力颠簸可以从椎间盘的内部完全阻止行星形成。虽然内圆盘零件最有利于光滑的圆盘中的卵石积聚,但多个波动的压力凸起可以促进圆盘宽区域中卵石积聚的快速行星形成。

Protoplanetary discs exhibit a diversity of gaps and rings of dust material, believed to be a manifestation of pressure maxima commonly associated with an ongoing planet formation and several other physical processes. Hydrodynamic disc simulations further suggest that multiple dust ring-like structures may be ubiquitous in discs. In the recent past, it has been shown that dust rings may provide a suitable avenue for planet formation. We study how a globally perturbed disc affects dust evolution and core growth by pebble accretion. We performed global disc simulations featuring a Gaussian pressure profile, in tandem with global perturbations of the gas density, mimicking wave-like structures, and simulated planetary core formation at pressure minima and maxima. With Gaussian pressure profiles, grains in the inside disc regions were extremely depleted in the first 0.1 Myrs of disc lifetime. The global pressure bumps confined dust material for several million years, depending on the strength of perturbations. A variety of cores formed in bumpy discs, with massive cores at locations where core growth was not feasible in a smooth disc, and small cores at locations where massive cores could form in a smooth disc. We conclude that pressure bumps generated by a planet and/or other physical phenomena can completely thwart planet formation from the inside parts of the disc. While inner disc parts are most favourable for pebble accretion in a smooth disc, multiple wave-like pressure bumps can promote rapid planet formation by pebble accretion in broad areas of the disc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源