论文标题
通过基于DEIM的数据投影在不合格接口的基于DEIM的数据投影中,有效且经过认证的解决方案的解决方案
Efficient and certified solution of parametrized one-way coupled problems through DEIM-based data projection across non-conforming interfaces
论文作者
论文摘要
耦合问题的主要挑战之一是,由于所采用的不同数值方案或域的离散化,由于不同的数值方案或域名,在两个模型和/或域之间的接口上管理不合格的网格。而且,通常,复杂的子模型取决于(例如物理或几何)参数。因此,了解感兴趣的产出如何受参数变化的影响,因此起着关键作用,以获取有关问题物理学的有用见解。但是,使用高保真性,全订单模型通常无法承受的昂贵重复解决方案。在本文中,我们为第一个独立模型,主模型和第二个模型(从Dirichlet接口条件)提出了一种参数减少的订单建模(ROM)技术,该技术由第一个独立模型,主模型和从属模型,第二个模型,即从设备模型。我们将降低的基础(RB)方法与应用于每个子问题的方法与离散的经验插值方法(DEIM)相结合,以在域界面上有效地插入或投射dirichlet数据,从而构建了整体耦合问题的低维度表示。然后,通过考虑涉及稳定和不稳定问题的一系列测试案例,并在两种情况下对耦合问题的解决方案进行A-tosteriori错误估计,通过数值验证了所提出的技术。这项工作源于解决交错的心脏电生理模型的需要,这代表了迈向ROM技术的第一步,即更通用的双向dirichlet-neumann-neumann耦合问题,当界面不符合界面不合格时,用域分解子结构方法解决了。
One of the major challenges of coupled problems is to manage nonconforming meshes at the interface between two models and/or domains, due to different numerical schemes or domains discretizations employed. Moreover, very often complex submodels depend on (e.g., physical or geometrical) parameters. Understanding how outputs of interest are affected by parameter variations thus plays a key role to gain useful insights on the problem's physics; however, expensive repeated solutions of the problem using high-fidelity, full-order models are often unaffordable. In this paper, we propose a parametric reduced order modeling (ROM) technique for parametrized one-way coupled problems made by a first independent model, the master model, and a second model, the slave model, that depends on the master model through Dirichlet interface conditions. We combine a reduced basis (RB) method, applied to each subproblems, with the discretized empirical interpolation method (DEIM) to efficiently interpolate or project Dirichlet data across conforming and non-conforming meshes at the domains interface, building a low-dimensional representation of the overall coupled problem. The proposed technique is then numerically verified by considering a series of test cases involving both steady and unsteady problems, and deriving a-posteriori error estimates on the solution of the coupled problem in both cases. This work arises from the need to solve staggered cardiac electrophysiological models and represents the first step towards the setting of ROM techniques for the more general two-way Dirichlet-Neumann coupled problems solved with domain decomposition sub-structuring methods, when interface non-conformity is involved.