论文标题

在微型印刷电路上进行机器学习分类的近似决策树

Approximate Decision Trees For Machine Learning Classification on Tiny Printed Circuits

论文作者

Balaskas, Konstantinos, Zervakis, Georgios, Siozios, Kostas, Tahoori, Mehdi B., Henkel, Joerg

论文摘要

尽管印刷电子产品(PE)无法与基于硅的系统进行常规评估指标(例如集成密度,面积和性能)竞争,但PE提供了有吸引力的特性,例如在需求超低成本的制造,灵活性和无毒性。结果,它针对的是基于光刻的硅电子无法触摸的应用域,因此尚未看到计算的太多扩散。但是,尽管PE具有吸引人的特征,但PE中的大型大小禁止实现复杂的印刷电路,例如机器学习(ML)分类器。在这项工作中,我们利用决策树的硬件友好性来进行机器学习分类,并利用近似设计的硬件效率,以生成适用于小型,超级资源约束和电池供电的印刷应用的近似ML分类器。

Although Printed Electronics (PE) cannot compete with silicon-based systems in conventional evaluation metrics, e.g., integration density, area and performance, PE offers attractive properties such as on-demand ultra-low-cost fabrication, flexibility and non-toxicity. As a result, it targets application domains that are untouchable by lithography-based silicon electronics and thus have not yet seen much proliferation of computing. However, despite the attractive characteristics of PE, the large feature sizes in PE prohibit the realization of complex printed circuits, such as Machine Learning (ML) classifiers. In this work, we exploit the hardware-friendly nature of Decision Trees for machine learning classification and leverage the hardware-efficiency of the approximate design in order to generate approximate ML classifiers that are suitable for tiny, ultra-resource constrained, and battery-powered printed applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源