论文标题

使用MCNP快速中子跟踪的效率研究

Efficiency Studies of Fast Neutron Tracking using MCNP

论文作者

Chu, Pinghan, James, Michael R., Wang, Zhehui

论文摘要

快速中子鉴定和光谱学对核物理实验具有极大的兴趣。使用中子弹性散射,可以测量快速中子动量。 (Wang and Morris,2013年)介绍了一个理论概念,即最初的快速中子动量可以从中子和目标之间连续三个连续的弹性碰撞得出,包括两个连续后坐力离子轨道的信息以及第三碰撞或第三个碰撞或两次连续与时间信息相撞的弹性碰撞的顶点。在这里,我们还包括测量后坐力离子沉积能量的其他可能性。在本文中,我们使用Monte Carlo N颗粒传输代码(MCNP)模拟中子弹性散射,并研究相应的中子检测和跟踪效率。相应的效率和散射距离是用不同的目标材料模拟的,尤其是天然硅(92.23 $ \%$ $ $^{28} $ SI,4.67 $ \%$ $ $ $ $^{29} $ si和3.1 $ $ $ $ $ $ $ $^{30} $ si} $ si)和helium-si-4($^4 $ HE)。还研究了碰撞和后坐离子能量的时机,这是检测器设计的重要特征。我们还使用软件“物质中的停止和离子范围(SRIM)”计算了不同能量的离子行进范围,这表明可以在$^4 $ HE中最方便地观察到离子轨道,除非可以在硅中获得亚微米空间分辨率。

Fast neutron identification and spectroscopy is of great interest to nuclear physics experiments. Using the neutron elastic scattering, the fast neutron momentum can be measured. (Wang and Morris, 2013) introduced the theoretical concept that the initial fast neutron momentum can be derived from up to three consecutive elastic collisions between the neutron and the target, including the information of two consecutive recoil ion tracks and the vertex position of the third collision or two consecutive elastic collisions with the timing information. Here we also include the additional possibility of measuring the deposited energies from the recoil ions. In this paper, we simulate the neutron elastic scattering using the Monte Carlo N-Particle Transport Code (MCNP) and study the corresponding neutron detection and tracking efficiency. The corresponding efficiency and the scattering distances are simulated with different target materials, especially natural silicon (92.23$\%$ $^{28}$Si, 4.67$\%$ $^{29}$Si, and 3.1$\%$ $^{30}$Si) and helium-4 ($^4$He). The timing of collision and the recoil ion energy are also investigated, which are important characters for the detector design. We also calculate the ion travelling range for different energies using the software, "The Stopping and Range of Ions in Matter (SRIM)", showing that the ion track can be most conveniently observed in $^4$He unless sub-micron spatial resolution can be obtained in silicon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源