论文标题

通过机器学习,提高HADRONIC最终状态的未来山利区的di-higgs敏感性

Improving Di-Higgs Sensitivity at Future Colliders in Hadronic Final States with Machine Learning

论文作者

Apresyan, Artur, Diaz, Daniel, Duarte, Javier, Ganguly, Sanmay, Kansal, Raghav, Lu, Nan, Suarez, Cristina Mantilla, Mukherjee, Samadrita, Peña, Cristían, Sheldon, Brian, Xie, Si

论文摘要

未来小组式物理计划的核心目标之一是阐明电子对称性破坏的起源,包括对希格斯行业的精确测量。这包括对Higgs Boson(H)对生产的详细研究,可以揭示H自耦合。自从发现希格斯玻色子(Higgs Boson)以来,Higgs Boson属性的大量测量活动已经开始,并且在该计划完成期间已经出现了许多新想法。一个想法是使用高度增强和合并的higgs boson($ \ mathrm {h} \ to \ mathrm {b} \ bar {\ mathrm {b}} $, $\mathrm{H}\to\mathrm{W}\mathrm{W}\to\mathrm{q}\bar{\mathrm{q}}\mathrm{q}\bar{\mathrm{q}}$) with machine learning methods to improve the signal-to-background discrimination.在这份白皮书中,我们倡导使用这些模式来提高未来对撞机物理计划的敏感性,以使Higgs Boson对生产,Higgs自耦合以及Higgs-Vector-Vector-Boson耦合。我们证明了在强生模式下的未来圆形对撞机的潜在改进,尤其是在使用图神经网络的情况下。

One of the central goals of the physics program at the future colliders is to elucidate the origin of electroweak symmetry breaking, including precision measurements of the Higgs sector. This includes a detailed study of Higgs boson (H) pair production, which can reveal the H self-coupling. Since the discovery of the Higgs boson, a large campaign of measurements of the properties of the Higgs boson has begun and many new ideas have emerged during the completion of this program. One such idea is the use of highly boosted and merged hadronic decays of the Higgs boson ($\mathrm{H}\to\mathrm{b}\bar{\mathrm{b}}$, $\mathrm{H}\to\mathrm{W}\mathrm{W}\to\mathrm{q}\bar{\mathrm{q}}\mathrm{q}\bar{\mathrm{q}}$) with machine learning methods to improve the signal-to-background discrimination. In this white paper, we champion the use of these modes to boost the sensitivity of future collider physics programs to Higgs boson pair production, the Higgs self-coupling, and Higgs-vector boson couplings. We demonstrate the potential improvement possible at the Future Circular Collider in hadron mode, especially with the use of graph neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源