论文标题
随机简单三角剖分的第一步渗透
First-passage percolation on random simple triangulations
论文作者
论文摘要
我们研究了对随机简单三角剖分及其双重地图的第一要组渗透,并具有独立分布的链路权重。我们的主要结果表明,第一个通用渗透距离集中在$ o_p(n^{1/4})$窗口中,围绕图形距离的常数倍数。
We study first-passage percolation on random simple triangulations and their dual maps with independent identically distributed link weights. Our main result shows that the first-passage percolation distance concentrates in an $o_p(n^{1/4})$ window around a constant multiple of the graph distance.