论文标题

自动差异的逆哈密顿设计

Inverse Hamiltonian design by automatic differentiation

论文作者

Inui, Koji, Motome, Yukitoshi

论文摘要

材料科学的最终目标是随意提供具有所需特性的材料。在理论研究中,一种标准方法包括基于现象学或第一原则来构建哈密顿量,计算物理可观察物以及通过反馈改善哈密顿量。但是,还有一种方法可以绕过这种繁琐的程序,即直接从所需的特性中获得适当的哈密顿量。解决逆问题有可能在定性上达到不同的原则,但是迄今为止,大多数研究都仅限于已知模型中参数的定量确定。在这里,我们提出了一个通用框架,该框架可以通过使用自动分化来优化众多参数来实现哈密顿人的逆设计。通过将其应用于量子异常效应(AHE),我们表明我们的框架不仅可以重新发现Haldane模型,而且可以自动产生一种新的Hamiltonian,该新哈密顿量显示出更大的AHE。此外,对光伏效应(PVE)的应用给出了在非稳态自旋纹理上移动的电子的最佳哈密顿量,该纹理可以在太阳辐射下生成$ \ sim 900 $ 〜A/m $^2 $。该框架将通过建立前所未有的模型和原则来加速材料探索,超越人类直觉和经验规则。

An ultimate goal of materials science is to deliver materials with desired properties at will. In the theoretical study, a standard approach consists of constructing a Hamiltonian based on phenomenology or first principles, calculating physical observables, and improving the Hamiltonian through feedback. However, there is also an approach that bypasses such a cumbersome procedure, namely, to obtain an appropriate Hamiltonian directly from the desired properties. Solving the inverse problem has the potential to reach qualitatively different principles, but most research to date has been limited to quantitative determination of parameters within known models. Here, we present a general framework that enables the inverse design of Hamiltonians by optimizing numerous parameters using automatic differentiation. By applying it to the quantum anomalous Hall effect (AHE), we show that our framework can not only rediscover the Haldane model but also automatically generate a new Hamiltonian that exhibits a six-times larger AHE. In addition, the application to the photovoltaic effect (PVE) gives an optimal Hamiltonian for electrons moving on a noncoplanar spin texture, which can generate $\sim 900$~A/m$^2$ under solar radiation. This framework would accelerate materials exploration by establishing unprecedented models and principles beyond human intuition and empirical rules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源