论文标题

拨号:用于基于对话的药物建议的数据集

DialMed: A Dataset for Dialogue-based Medication Recommendation

论文作者

He, Zhenfeng, Han, Yuqiang, Ouyang, Zhenqiu, Gao, Wei, Chen, Hongxu, Xu, Guandong, Wu, Jian

论文摘要

对于智能医疗保健系统,药物建议是一项至关重要的任务。先前的研究主要建议使用电子健康记录(EHRS)药物。但是,在EHR中,可能会忽略或省略医生与患者之间相互作用的一些细节,这对于自动药物建议至关重要。因此,我们首次尝试通过医生和患者之间的对话推荐药物。在这项工作中,我们构建了Dialmed,这是第一个用于基于医学对话的药物建议任务的高质量数据集。它包含与3个部门的16种常见疾病和70种相应常见药物有关的11,996次医疗对话。此外,我们提出了对话结构和疾病知识意识网络(DDN),其中QA对话图机制旨在对话结构进行建模,并使用知识图来引入外部疾病知识。广泛的实验结果表明,所提出的方法是推荐与医疗对话的药物的有前途的解决方案。该数据集和代码可在https://github.com/f-window/dialmed上找到。

Medication recommendation is a crucial task for intelligent healthcare systems. Previous studies mainly recommend medications with electronic health records (EHRs). However, some details of interactions between doctors and patients may be ignored or omitted in EHRs, which are essential for automatic medication recommendation. Therefore, we make the first attempt to recommend medications with the conversations between doctors and patients. In this work, we construct DIALMED, the first high-quality dataset for medical dialogue-based medication recommendation task. It contains 11,996 medical dialogues related to 16 common diseases from 3 departments and 70 corresponding common medications. Furthermore, we propose a Dialogue structure and Disease knowledge aware Network (DDN), where a QA Dialogue Graph mechanism is designed to model the dialogue structure and the knowledge graph is used to introduce external disease knowledge. The extensive experimental results demonstrate that the proposed method is a promising solution to recommend medications with medical dialogues. The dataset and code are available at https://github.com/f-window/DialMed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源