论文标题
一种随机二进制顶点触发重置算法,用于脉冲耦合振荡器的全局同步
A Stochastic Binary Vertex-Triggering Resetting Algorithm for Global Synchronization of Pulse-Coupled Oscillators
论文作者
论文摘要
在本文中,我们提出了一种新型的随机二进制复位算法,用于脉冲耦合振荡器网络(或简单地说,代理),以达到全局同步。该算法易于说明:网络中的每个代理都以通用频率振荡。完成振荡后,代理会生成一个Bernoulli随机变量,以决定它是将脉冲发送到其所有近脑的脉冲还是保持安静。收到脉冲后,代理通过遵循二进制阶段更新规则重置其状态。我们表明,这种算法几乎可以保证代理的全局同步,只要基础信息流拓扑是一个根的有向图。结果的证明依赖于使用随机混合动力学系统方法。在本文结尾处,我们为结果的有效性提供了数值演示,还介绍了有关到达各种信息流拓扑所需的时间的数值研究。
In this paper, we propose a novel stochastic binary resetting algorithm for networks of pulse-coupled oscillators (or, simply, agents) to reach global synchronization. The algorithm is simple to state: Every agent in a network oscillates at a common frequency. Upon completing an oscillation, an agent generates a Bernoulli random variable to decide whether it sends pulses to all of its out-neighbors or it stays quiet. Upon receiving a pulse, an agent resets its state by following a binary phase update rule. We show that such an algorithm can guarantee global synchronization of the agents almost surely as long as the underlying information flow topology is a rooted directed graph. The proof of the result relies on the use of a stochastic hybrid dynamical system approach. Toward the end of the paper, we present numerical demonstrations for the validity of the result and, also, numerical studies about the times needed to reach synchronization for various information flow topologies.