论文标题

汽车MMWave雷达检测点基于实例分段的对比度学习

Contrastive Learning for Automotive mmWave Radar Detection Points Based Instance Segmentation

论文作者

Xiong, Weiyi, Liu, Jianan, Xia, Yuxuan, Huang, Tao, Zhu, Bing, Xiang, Wei

论文摘要

汽车MMWAVE雷达在高级驾驶员辅助系统(ADA)和自动驾驶中起关键作用。基于深度学习的实例细分可以从雷达检测点实时对象识别。在常规培训过程中,准确的注释是关键。但是,由于雷达检测点的高质量注释,由于其歧义和稀疏性,要实现挑战。为了解决这个问题,我们提出了一种实现基于雷达检测点的实例细分的对比学习方法。我们根据地面真相标签定义正面和负样品,将对比度损失首先训练模型,然后对以下下游任务进行微调。此外,可以将这两个步骤合并为一个,并且可以为未标记的数据生成伪标签,以进一步提高性能。因此,我们的方法有四种不同的培训设置。实验表明,当仅适用于一小部分培训数据时,我们的方法仍然可以通过以100%的地面真实信息为监督的方式来实现可比的性能。

The automotive mmWave radar plays a key role in advanced driver assistance systems (ADAS) and autonomous driving. Deep learning-based instance segmentation enables real-time object identification from the radar detection points. In the conventional training process, accurate annotation is the key. However, high-quality annotations of radar detection points are challenging to achieve due to their ambiguity and sparsity. To address this issue, we propose a contrastive learning approach for implementing radar detection points-based instance segmentation. We define the positive and negative samples according to the ground-truth label, apply the contrastive loss to train the model first, and then perform fine-tuning for the following downstream task. In addition, these two steps can be merged into one, and pseudo labels can be generated for the unlabeled data to improve the performance further. Thus, there are four different training settings for our method. Experiments show that when the ground-truth information is only available for a small proportion of the training data, our method still achieves a comparable performance to the approach trained in a supervised manner with 100% ground-truth information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源