论文标题

楼梯图案中的楼梯表面

Staircase Patterns in Hirzebruch Surfaces

论文作者

Magill, Nicki, McDuff, Dusa, Weiler, Morgan

论文摘要

符号四歧管$ x $的椭圆形能力函数衡量$ x $上的表格必须扩大多少,以便它承认嵌入式偏心度$ z $的嵌入式椭圆形。在大多数情况下,除了体积外,这种嵌入的障碍物有限很多。如果有无限的障碍物,据说$ x $有一个楼梯。本文几乎完整地描述了通过用重量$ b $炸毁投射平面而形成的符号型海尔兹布鲁克表面的椭圆形能力功能中的楼梯。我们描述了一个交织的,递归定义的,椭圆形的符号嵌入的障碍物系列,表明有一组开放的形状参数$ b $被阻止的,即没有楼梯,并且没有楼梯,也没有$ b $的其他值。其余的$ b $值形成了一个可计数的特殊有理数序列,这些顺序与Magill-Mcduff(Arxiv:2106.09143)中讨论的对称性密切相关。我们表明,他们都没有承认上升的楼梯。猜想,没有人承认下降的楼梯。最后,我们表明,只要$ b $不是这些特殊有理价值之一,$ h_b $中的任何楼梯都有非理性的积累点。我们证明的关键要素是一种新的,更间接的方法,用于在Magill(Arxiv:2204.12460)对楼梯分析中使用几乎曲折的纤维。特别是,在$ h_b $上几乎旋转纤维的相关突变的结构在一组被阻塞的$ b $ intervals的结构中回荡。

The ellipsoidal capacity function of a symplectic four manifold $X$ measures how much the form on $X$ must be dilated in order for it to admit an embedded ellipsoid of eccentricity $z$. In most cases there are just finitely many obstructions to such an embedding besides the volume. If there are infinitely many obstructions, $X$ is said to have a staircase. This paper gives an almost complete description of the staircases in the ellipsoidal capacity functions of the symplectic Hirzebruch surfaces $H_b$ formed by blowing up the projective plane with weight $b$. We describe an interweaving, recursively defined, family of obstructions to symplectic embeddings of ellipsoids that show there is an open dense set of shape parameters $b$ that are blocked, i.e. have no staircase, and an uncountable number of other values of $b$ that do admit staircases. The remaining $b$-values form a countable sequence of special rational numbers that are closely related to the symmetries discussed in Magill--McDuff (arXiv:2106.09143). We show that none of them admit ascending staircases. Conjecturally, none admit descending staircases. Finally, we show that, as long as $b$ is not one of these special rational values, any staircase in $H_b$ has irrational accumulation point. A crucial ingredient of our proofs is the new, more indirect approach to using almost toric fibrations in the analysis of staircases by Magill (arXiv:2204.12460). In particular, the structure of the relevant mutations of the set of almost toric fibrations on $H_b$ is echoed in the structure of the set of blocked $b$-intervals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源