论文标题
关于融合图的局部抗原总标记
On local antimagic total labeling of amalgamation graphs
论文作者
论文摘要
令$ g =(v,e)$为连接的简单订单$ p $和size $ q $的图形。如果$ g $承认当地的抗原(总)标签,则图$ g $称为本地抗原(总)。 bifact $ g:e \ to \ {1,2,\ ldots,q \} $称为$ g $ $ g $的本地抗害怕标签,如果对任何两个相邻的顶点$ u $和$ v $,我们都有$ g^+(u)\ ne g^+(u)\ ne g^+(v) $ e(u)$是事件的一组$ u $。同样,一个两次培养$ f:v(g)\ cup e(g)\ to \ {1,2,\ ldots,p +q \} $被称为本地抗原总标签$ g $的$ g $,如果任何两个相邻的顶点$ u $和$ v $,我们有$ w_f(u) \ sum_ {e \ in E(u)} f(e)$。因此,如果为color $ g^+(v)$(分别为$ w_f(u)$),则任何本地抗原(总)标签都会诱导$ g $的正确顶点着色,为$ g $。局部抗原(总)色度,表示为$χ_{la}(g)$(分别$χ_{LAT}(g)$)是$ g $的本地抗原(总)标签上采取的诱导颜色的最低诱导颜色数量。在本文中,我们确定了$χ_{LAT}(g)$,其中$ g $是完整图的合并。
Let $G = (V,E)$ be a connected simple graph of order $p$ and size $q$. A graph $G$ is called local antimagic (total) if $G$ admits a local antimagic (total) labeling. A bijection $g : E \to \{1,2,\ldots,q\}$ is called a local antimagic labeling of $G$ if for any two adjacent vertices $u$ and $v$, we have $g^+(u) \ne g^+(v)$, where $g^+(u) = \sum_{e\in E(u)} g(e)$, and $E(u)$ is the set of edges incident to $u$. Similarly, a bijection $f:V(G)\cup E(G)\to \{1,2,\ldots,p+q\}$ is called a local antimagic total labeling of $G$ if for any two adjacent vertices $u$ and $v$, we have $w_f(u)\ne w_f(v)$, where $w_f(u) = f(u) + \sum_{e\in E(u)} f(e)$. Thus, any local antimagic (total) labeling induces a proper vertex coloring of $G$ if vertex $v$ is assigned the color $g^+(v)$ (respectively, $w_f(u)$). The local antimagic (total) chromatic number, denoted $χ_{la}(G)$ (respectively $χ_{lat}(G)$), is the minimum number of induced colors taken over local antimagic (total) labeling of $G$. In this paper, we determined $χ_{lat}(G)$ where $G$ is the amalgamation of complete graphs.