论文标题

印刷机学习电路的跨层近似

Cross-Layer Approximation For Printed Machine Learning Circuits

论文作者

Armeniakos, Giorgos, Zervakis, Georgios, Soudris, Dimitrios, Tahoori, Mehdi B., Henkel, Jörg

论文摘要

印刷的电子产品(PE)具有低未重新策略的工程成本和单位面积制造成本低的低,因此使得非常低的成本和点播硬件。这种低成本的制造允许在硅中不可行的高定制,定制的体系结构占上风,以提高新兴PE机器学习(ML)应用的效率。但是,即使使用定制的体系结构,PE限制了可以实现的ML模型的复杂性的大型大小。在这项工作中,我们首次将近似计算和PE设计定位汇总为启用复杂的ML模型,例如多层感知器(MLP)和支持向量机(SVMS),在PE中。为此,我们提出并实施了针对定制ML体系结构量身定制的跨层近似。在算法级别,我们应用了ML模型的硬件驱动系数近似值,在电路级别,我们通过完整的搜索探索应用网络清单修剪。在我们广泛的实验评估中,我们考虑了14个MLP和SVM,并评估了4300多个近似和精确的设计。我们的结果表明,我们的交叉近似提供了帕累托最佳设计,与最先进的精确设计相比,该设计的平均面积分别为47%和44%,分别为47%和44%,并且精度损失少于1%。

Printed electronics (PE) feature low non-recurring engineering costs and low per unit-area fabrication costs, enabling thus extremely low-cost and on-demand hardware. Such low-cost fabrication allows for high customization that would be infeasible in silicon, and bespoke architectures prevail to improve the efficiency of emerging PE machine learning (ML) applications. However, even with bespoke architectures, the large feature sizes in PE constraint the complexity of the ML models that can be implemented. In this work, we bring together, for the first time, approximate computing and PE design targeting to enable complex ML models, such as Multi-Layer Perceptrons (MLPs) and Support Vector Machines (SVMs), in PE. To this end, we propose and implement a cross-layer approximation, tailored for bespoke ML architectures. At the algorithmic level we apply a hardware-driven coefficient approximation of the ML model and at the circuit level we apply a netlist pruning through a full search exploration. In our extensive experimental evaluation we consider 14 MLPs and SVMs and evaluate more than 4300 approximate and exact designs. Our results demonstrate that our cross approximation delivers Pareto optimal designs that, compared to the state-of-the-art exact designs, feature 47% and 44% average area and power reduction, respectively, and less than 1% accuracy loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源